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About the Seminar 

The National Seminar on Current Perspectives in Mathematics was conducted by the 

PG and Research Department of Mathematics on 01.04.2023 in the New Conference Hall, 

Saiva Bhanu Kshatriya College, Aruppukottai. 163 participants, including students, research 

scholars and faculty members, attended the Seminar. The theme of the seminar was to motivate 

the students, researchers and young faculty to develop interest towards higher education and 

research in Mathematics. Dr. M. Chandramouleeswaran, Head (Retired), PG and Research 

Department of Mathematics, S.B.K. College delivered the Keynote address, which motivated 

the participants towards the technical sessions. 

In the technical session I, Dr. R. Kala, Professor, M. S. University, Tirunelveli delivered 

a lecture on the topic “Some new graph Parameters”. The participants got the idea about the 

developing concepts in the field of graph theory. They enjoyed the session and interacted with 

the resource person. In the technical session II, Dr. S. Rajeshwari, Assistant Professor, BIT, 

Bangalore delivered a lecture on the topic “Complex Analysis and Value Distribution Theory”. 

The talk was well organized and it gave the participants, clear information about the Value 

Distribution Theory. In the technical session III, Dr. M. Chandramouleeswaran recalled the 

definitions of semigroups and semirings and explained how a semiring valued semigraph was 

constructed, in his talk on “Semiring Valued Semi-graphs”.  On the whole, all three sessions 

gave a platform for the participants to interact with reputed Resource Persons.  

The paper presentation was conducted in 4 parallel sessions. 29 participants presented 

their papers in the seminar. From them, 19 papers were shortlisted by the Editors for publication 

in the Proceedings. 
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About the College 

  Saiva Bhanu Kshatriya College, Aruppukottai, Tamil Nadu, India was established by 

Aruppukottai Nadar Uravinmurai Pothu Abiviruthi Trust in 1970. The college is an aided co-

educational institution affiliated to Madurai Kamaraj University, Madurai. The college offers 

UG and PG Courses in various disciplines. Two departments are upgraded as Research Centre. 

The vision of the college is to impart quality higher education to the socio-economically weaker 

student community. The aim of the college is “Aim High” reflecting the pursuit of excellence. 

The college also provides value-based education and train the students to become worthy 

citizens. 

About the Department 

The department of Mathematics was established in the year 1970 with the Pre 

University Course. B.Sc. (Mathematics) and M.Sc. (Mathematics) were introduced in 1982 and 

1987 respectively. In the year 2013, it became a research centre. Active research is being 

carried on by the faculty of the department in both pure and applied mathematics. The 

department is conducting National Seminar every year with funds from various funding 

agencies and also as self-funded. Through the department, 26 research scholars were awarded 

Ph.D. degree. The staff members of the department published more than 150 research papers 

in reputed, peer-reviewed National and International journals and presented many research 

papers in National and International Conferences. 
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Message from the Principal 
 

Dr. K. Sudhagaran, 

Principal (i/c) 

Saiva Bhanu Kshatriya College, 

Aruppukottai - 626101. 

 

Greetings to all the participants and faculty members of the PG and Research 

Department of Mathematics. The PG and Research Department of Mathematics, Saiva 

Bhanu Kshatriya College is functioning since the academic year 1971-1972 with 

teaching Mathematics for Pre-University Course. In the year 1982-1983 B.Sc., 

Mathematics course was introduced. The Department started offering M.Sc. 

Programme in Mathematics in the year 1987-1988. It also offers M.Phil., programme 

in Mathematics as a self-supporting programme since 2007-2008. It has been upgraded 

into a full-pledged research center from the academic year 2013-2014. Active research 

is being carried on by the faculty of the department in both pure and applied 

mathematics. The department is conducting National Seminar every year with funds 

from various funding agencies and also as self-funded. This year, they have conducted 

the National Seminar on Current Perspectives in Mathematics. The Proceedings of the 

Seminar is duly edited and brought out by Dr. N. Kandaraj, Associate Professor and 

Head of the Department and Dr. V. Thiruveni, Assistant Professor, PG and Research 

Department of Mathematics of our college as the Convener and Organizing Secretary 

of the Seminar. My best wishes to the faculty members of the department and the 

participants. 
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From the Desk of Editors 

  

The PG and Research Department of Mathematics, Saiva Bhanu Kshatriya 

College, Aruppukottai has been organizing National Seminar every year to focus on the 

recent innovative developments on various fields of Mathematics. It paved a way for 

the research scholars and young college teachers to exchange information in different 

branches of Mathematics with the experts in the field. This year the National Seminar 

on Current Perspectives in Mathematics is organized on 01.04.2023. The seminar was 

inaugurated by Dr. M. Chandramouleeswaran, Retired Head of our Department under 

the president ship of Mr. R. Gunasekaran, Secretary, Saiva Bhanu Kshatriya College 

Managing Board, in the presence of Dr. K. Sudhagaran, Principal(i/c). Many 

distinguished mathematicians from various universities and colleges actively 

participated in the seminar. There were three invited speakers and 29 contributory 

papers. The topics discussed during the seminar include Graph Parameters, Complex 

Analysis and S-Valued Semi-graphs. This proceeding contains 19 selected papers 

presented by the participants at the seminar. We take this opportunity to thank the 

Managing Board of Saiva Bhanu Kshatriya College for their constant encouragement 

to organize the seminar and edit the proceedings. We extend our thanks to Dr. K. 

Sudhagaran, Principal (i/c), Saiva Bhanu Kshatriya College, Aruppukottai for his 

support and encouragement. Our special thanks to the staff members, research scholars 

and students of the Department for their enthusiastic and unstinted support rendered for 

the successful conduct of the Seminar. We thank all the participants but for whom the 

seminar would not have been such a success. Finally, we thank the Editor, Research 

Culture Society and Publication for his help in bringing this proceeding. 

 

Dr. N. Kandaraj and Dr. V. Thiruveni 

Editors 
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PARTIAL WEIGHT DOMINATION NUMBER OF S-VALUED 
GRAPHS 

P. Malathy1 and V. Thiruveni2 
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ABSTRACT:  The theory of domination in graphs has been studied by several authors. In 

2015, Chandramouleeswaran and others introduced semiring valued graphs (that is graphs 

whose vertices and edges are labeled with values from a semiring S) and they have done 

several works on weight dominating vertex sets and weight domination number for S-valued 

graphs. Motivated by these previous investigations, we work here on the partial weight 

domination number of S- valued graphs. We get interest in studying the relationship between 

the partial weight domination and the weight domination parameters. Some bounds on (𝛼, 𝑝) 

partial weight domination number of 𝐺𝑆, that is   𝛾(𝛼,𝑝)(𝐺𝑆) are obtained for 𝐺𝑆 and we derive 

some results for the partial weight dominating vertex sets of a S-valued graphs. Also we 

establish a relationship between two partial weight domination numbers of S-valued graph 𝛾(𝛼,𝑝)(𝐺𝑆) and 𝛾(𝛼,𝑞)(𝐺𝑆)where 0 ≤ 𝑝 < 𝑞 ≤ 1,which in turn provides another upper bound 

for𝛾(𝛼,𝑝)(𝐺𝑆). Further, we focus special attention on (α, 1/2) domination number of S-valued 

graphs.  

 

1. INTRODUCTION: 

 More than 4000 papers were published on dominating sets in graphs and in all that papers, 

properties of variety of variations of dominating sets and good bounds for various domination 

numbers were derived. Many variations of the dominating sets can be found in graphs, most of 

which are motivated by many real life situations. 

 We consider one such real life situation in the following street lights problem. There are 

n street lights in the street and each light is focusing on particular length of the street. Each 

vertex represents the street lights and u and v are adjacent if and only if the two lights focus 

each other. In this case the most economical solution is the minimum number of possible lights 

that cover the streets, correspond to the 𝛾- sets.Suppose that due to the repair of lights or the 

short circuit, we can at most secure a fraction or part of the street lights and keep switched off 

the lights that are needed to be repaired on that particular day. In that case, we need partial 

weight domination in S-valued graphs and the length is nothing but the weight of the graph. In 

this present work, we define partial domination parameter in S-valued graphs and derive some 

results for the  𝛾(𝛼,𝑝)-sets, that is the partial weight domination sets of S-valued graphs and 

partial weight domination number of certain S-valued graphs. 

mailto:malathyselvaraj77@gmail.com
mailto:thiriveni2009@gmail.com


13 

 

2. PRELIMINARIES 

Definition 2.1. [4] A Semiring (S, +,.) is an algebraic system with a non-empty set S together 

with + and • such that  
1. (S, +, 0) is a monoid. 

2. (S, •) is a semigroup. 
3. For all a,b,c ∈ S, a•(b+c)=a•b+a•c and (a+b)•c=a•c+b•c 

4. 0•x=x•0=0∀ x∈ S 

Definition 2.2. [3] Let (S, +, •) be a semiring. A relation ≼ is said to be a canonical pre-order 

if for a, b ∈ S, a≼b if and only if there exists c∈S such that a+c =b 

Definition 2.3. [3] Let G = (V, E⊂ VXV) be the underlying graph with both V, E≠ ∅. For any 

semiring (S, +, •) a semiring valued graph (or an S-valued graph) 𝐺𝑆 is defined to be the graph 𝐺𝑆  = (V, E,𝜎, 𝜓) where σ: V→S and 𝜓:E→S is defined to be 𝜓(𝑥, 𝑦) = { min (𝜎(𝑥), 𝜎(𝑦)),        𝑖𝑓 𝜎(𝑥) ≼ 𝜎(𝑦) 𝑜𝑟 𝜎(𝑦) ≼ 𝜎(𝑥)    0                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                            
For every unordered pair (x,y) of E⊂VXV we call σ a S-vertex set and   𝜓 an S-edge set of S-

valued graph 𝐺𝑆 

Definition 2.4. [3] Consider the S-valued graph 𝐺𝑆 = (V, E, 𝜎, 𝜓). For 𝑣𝑖 ∈V, the open 

neighborhood of 𝑣𝑖  in 𝐺𝑆 is defined as a subset of V x S such that that 

 𝑁𝑆(𝑣𝑖)= {(𝑣𝑖, 𝜎(𝑣𝑗))/(𝑣𝑖 , 𝑣𝑗)) ∈E, 𝜓(𝑣𝑖, 𝑣𝑗)) ∈S}. For 𝑣𝑖 ∈ 𝑉 a closed neighborhood of 𝑣𝑖 in 𝐺𝑆 is defined to be the subset of VXS such that 𝑁𝑆[𝑣𝑖]= 𝑁𝑆(𝑣𝑖) ∪{(𝑣𝑖, 𝜎(𝑣𝑖))} 

Definition 2.5. [3] The degree of the vertex 𝑣𝑖 of the S-valued graph 𝐺𝑆is defined as   𝑑𝑒𝑔𝑆(𝑣𝑖)=( ∑ 𝜓(𝑣𝑖, 𝑣𝑗)), 𝑙 (𝑣𝑖,𝑣𝑗) ∈E )   where 𝑙 is the number of edges incident with 𝑣𝑖 
Definition 2.6. [3] In the S-valued graph 𝐺𝑆 = (V, E,𝜎, 𝜓), to compare the degrees of two 

vertices 𝑣,𝑤 ∈ 𝐺𝑆, we define the ≼ as follows:   

 (𝜎(𝑣),deg(v)) ≼(𝜎(𝑤),deg(w))⇔ (𝜎(𝑣) ≼ 𝜎(𝑤)) and deg(v) ≤ deg(w) 

 If (𝜎(𝑣) ≼ 𝜎(𝑤)) and deg(v) ≥deg(w), the comparison is with respect to the S-values 

Definition 2.7. [3] Let 𝐺𝑆 = (V, E,𝜎, 𝜓) be a given S-valued graph. A vertex v in 𝐺𝑆 is said to 

be a weight dominating vertex if 𝜎(𝑢) ≼ 𝜎(𝑣) ∀𝑢 ∈ 𝑁𝑆[𝑣] 
Definition 2.8. [3] A subset D⊆V is called a weight dominating vertex set of 𝐺𝑆if for each 𝑣 ∈𝐷     𝜎(𝑢) ≼ 𝜎(𝑣) ∀ u∈ 𝑁𝑆[𝑣]. The minimum cardinality of a weight dominating set of 𝐺𝑆 is 

called a weight domination number of 𝐺𝑆 which is denoted by 𝛾𝑆(𝐺𝑆) and the corresponding 

weight dominating set is called a 𝛾𝑆 − set of 𝐺𝑆. 

Definition 2.9. [3] Let 𝐺𝑆= (V, E,𝜎, 𝜓) be a given S-valued graph. The cardinality of the 

minimal weight dominating vertex set D⊆V is called the weight dominating vertex number of 𝐺𝑆 which is denoted by 𝛾𝑆(𝐺𝑆)  That is                                                                                                             𝛾𝑆(𝐺𝑆) = min {(|𝐷|𝑠, |𝐷|)/𝐷 is a weight dominating set vertex set of 𝐺𝑆} 

Here |𝐷|𝑠 denotes the scalar cardinality of D and |𝐷| denotes the number of vertices in D 

Definition 2.10. [3] Let 𝐺𝑆 = (V, E,𝜎, 𝜓) be a given S-valued graph. If D is a weight dominating 

vertex set of 𝐺𝑆 then the scalar cardinality of D denoted by |𝐷|𝑠 is defined by |𝐷|𝑠 =∑ 𝜎(𝑣)𝑣∈𝐷  

Definition 2.11. [1] The complement �̅� of a simple graph G is the simple graph with vertex set 

V, two vertices being adjacent in  �̅� iff they are not adjacent in G. 
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Definition 2.12. [1] A Dominating set D⊆V of a graph G is said to be a global dominating set 

if D is also a dominating set in the complement of G. 

3. PARTIAL WEIGHT DOMINATING VERTEX SETS IN S-VALUED GRAPHS 

Definition3.1. For any S – valued graph 𝐺𝑆 and proportion p ε [0,1] with some αεS a set D⊆V 

is a (α,p) partial weight dominating vertex set if (α,p)≼(|𝑁(𝐷)|𝑆 , |𝑁(𝐷)|/|𝑉|) 
Definition3.2. The (α,p) partial weight domination number 𝛾(𝛼,𝑝)(𝐺𝑆) is the minimum 

cardinality of a (α,p) partial weight dominating vertex set of 𝐺𝑆and it is given by 𝛾(𝛼,𝑝)(𝐺𝑆) =𝑚𝑖𝑛{(|𝐷|𝑆, |𝐷|)} where D is a  (α,p) partial weight  dominating vertex of 𝐺𝑆 where |𝐷|𝑆 

denotes the scalar cardinality of D and |𝐷| denotes the number of vertices in D. 

Here we note that a  𝛾(𝛼,𝑝) set is not in general related to a 𝛾- set.In particular a 𝛾- set does not 

necessarily contain a  𝛾(𝛼,𝑝) set.Equivalently a 𝛾(𝛼,𝑝)  set can not necessarily be extended to 𝛾- 

set.  

Clearly (0,1)≼ 𝛾(𝛼,𝑝)(𝐺𝑆) ≼  𝛾(𝐺𝑆) and  𝛾(𝛼,1)(𝐺𝑆) = 𝛾(𝐺𝑆)  

For example, we say that a set D⊆V is a ½- weight dominating vertex set if 

(α,1/2)≼(|𝑁(𝐷)|𝑆 , |𝑁(𝐷)|/|𝑉|).The ½-weight domination number 𝛾(𝛼,1/2) equals the 

minimum cardinality of a ½- weight dominating vertex set in 𝐺𝑆 

Example 3.3. 

consider the semiring (S={0,a,b,c},+, .}  with the following Cayley tables. 

 

+ 0 a b c 

0 0 a b c 

a A a b c 

b B b b b 

c C c b b 

 

Let   ≼ be a canonical preorder in S given by  

 0 ≼ 0, 0 ≼ a, 0 ≼  𝑏, 0 ≼ 𝑐, 𝑎 ≼ a, a ≼ 𝑏, 𝑎 ≼ c, b ≼ b, c ≼ c , c ≼ b   

Here σ: V→S and 𝜓:E→S are defined to be σ(𝑣1) = σ(𝑣6)= σ(𝑣3)=b σ(𝑣2)= σ(𝑣4)= c σ(𝑣5)=a 

and                                                                                                                                

Ψ( 𝑣1𝑣2)= Ψ( 𝑣2𝑣3)= Ψ( 𝑣1𝑣4)= Ψ( 𝑣2𝑣4)=c Ψ( 𝑣1𝑣6)=a Ψ( 𝑣3𝑣6)=b and Ψ( 𝑣4𝑣5)= 

Ψ( 𝑣3𝑣5)=c                                                                                               

Consider the S – valued graph GS = (V, E,𝜎, 𝜓) 

 
 

• 0 a b c 

0 0 0 0 0 

a 0 0 a 0 

b 0 a b c 

c 0 0 c c 
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Let us fix α to be a 

Consider the proportion p to be 1/2 then the (α,p)  partial weight dominating vertex set is 𝐷 ={(𝑣1, 𝜎(𝑣1))}  
N(D)= {(𝑣1, 𝜎(𝑣1)), (𝑣2, 𝜎(𝑣2))(𝑣6, 𝜎(𝑣6))}                                                                                    |𝑁(𝐷)|𝑆 = 𝜎(𝑣1) + 𝜎(𝑣2) + 𝜎(𝑣6) = 𝑏 + 𝑐 + 𝑏 = 𝑏 and |𝑁(𝐷)| = 3 

Here (α,p)≼( |𝑁(𝐷)|𝑆 , |𝑁(𝐷)|/|𝑉|) 
         (a,1/2) ≼ (b,3/6) 

                    ≼(b,1/2) 

Here the (α,1/2) partial weight domination number 𝛾(𝛼,1/2)(𝐺𝑆) = (𝑏, 1) 

Example3.3: Consider 𝐾2,3𝑆  with the semiring mentioned in example 1 

Let   ≼ be a canonical preorder in S given by  

 0 ≼ 0, 0 ≼ a, 0 ≼  𝑏, 0 ≼ 𝑐, 𝑎 ≼ a, a ≼ 𝑏, 𝑎 ≼ c, b ≼ b, c ≼ c , c ≼ b   

Here σ: V→S and 𝜓:E→S are defined to be σ(𝑣1) = σ(𝑣3)=b σ(𝑣2)= σ(𝑣5)= a σ(𝑣4)=c and                                                                                                                      

Ψ( 𝑣2𝑣3)= Ψ( 𝑣2𝑣4)= Ψ( 𝑣2𝑣5)= Ψ( 𝑣1𝑣5)=a Ψ( 𝑣1𝑣3)=b and Ψ( 𝑣1𝑣4)=c  

                    
 

Choose α=a and p to be ½ 

Consider D={(𝑣1, 𝜎(𝑣1))} 
N(D)= {(𝑣1, 𝜎(𝑣1)), (𝑣3, 𝜎(𝑣3))(𝑣4, 𝜎(𝑣4))(𝑣5, 𝜎(𝑣5))}                                                        |𝑁(𝐷)|𝑆 = 𝜎(𝑣1) + 𝜎(𝑣3) + 𝜎(𝑣4) + 𝜎(𝑣5) = 𝑏 + 𝑎 + 𝑐 + 𝑏 = 𝑏 and |𝑁(𝐷)| = 4 

Then (α,p)≼( |𝑁(𝐷)|𝑆 , |𝑁(𝐷)|/|𝑉|) 
         (a,1/2)≼(b,4/5)                                                                                               𝛾(𝛼,𝑝)(𝐾2,3𝑆 ) = (∑ 𝜎(𝑣)𝑣∈𝑉 , 1) 

 

4.  RESULTS ON PARTIAL WEIGHT DOMINATION NUMBER 

Proposition 4.1: Let 𝐺𝑆 be a S-valued graph on n vertices then  𝛾(𝛼,𝑝)(𝐺𝑆) = (∑ 𝜎(𝑣)𝑣∈𝑉 , 1)  

for all 𝑝 ∈ (0, ∆+1𝑛 ] 
Proposition 4.2: Let 𝐺𝑆 be a S-valued graph on n vertices then  𝛾(𝛼,𝑝)(𝐺𝑆) = 𝛾(𝐺𝑆)  for  all 𝑝 ∈ (1 − 1/𝑛, 1] 
Proposition 4.3: Let 𝐶𝑛𝑆 be the S-valued cycle on n vertices and  𝑃𝑛𝑆 be the S-valued path on 

n vertices then 𝛾(𝛼,𝑝)(𝐶𝑛𝑆) = 𝛾(𝛼,𝑝)(𝑃𝑛𝑆) = (∑ 𝜎(𝑣)𝑣∈𝑉 , ⌈𝑛p3 ⌉)  

Proof: Let D be a (α,p)  partial weight dominating vertex set of 𝐶𝑛𝑆 then |𝑁(𝐷)|𝑆 ≼∑ 𝜎(𝑣)𝑣∈𝑉  and ⌈𝑛p3 ⌉ ≤ |𝑁(𝐷)| 
To dominate ⌈𝑛𝑝⌉ vertices in 𝐶𝑛𝑆, we need at least ⌈𝑛p3 ⌉ vertices then 
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 𝛾(𝛼,𝑝)(𝐶𝑛𝑆) = (∑ 𝜎(𝑣)𝑣∈𝑉 , |𝐷|) and  |𝐷| = ⌈⌈𝑛𝑝⌉3 ⌉ = ⌈𝑛p3 ⌉  
Hence  𝛾(𝛼,𝑝)(𝐶𝑛𝑆) = (∑ 𝜎(𝑣)𝑣∈𝑉 , ⌈𝑛p3 ⌉) 

Similarly 𝛾(𝛼,𝑝)(𝑃𝑛𝑆) = (∑ 𝜎(𝑣)𝑣∈𝑉 , ⌈𝑛p3 ⌉) 

Proposition 4.4: For any S-valued complete graph vertices 𝐾𝑛𝑆 ,  𝛾(𝛼,𝑝)(𝐾𝑛𝑆) =(∑ 𝜎(𝑣)𝑣∈𝑉 , 1) 

Proposition 4.5: For any S – valued complete bipartite graph 𝐾𝑚,𝑛𝑆 with 2≤m≤n, 

 𝛾(𝛼,𝑝)(𝐾𝑚,𝑛𝑆 ) = {(∑ 𝜎(𝑣)𝑣∈𝑉 , 1)  𝑖𝑓 0 ≤ p ≤ 𝑚+1𝑚+𝑛(∑ 𝜎(𝑣)𝑣∈𝐷 , 2), 𝑖𝑓 p ≤ 𝑚+1𝑚+𝑛 ≤ 1 

Now we compare  𝛾(𝛼,𝑝)(𝐺𝑆) and  𝛾(𝛼,𝑞)(𝐺𝑆) for different proportions p and q. 

Proportion 4.6: Let 0≤p<q≤1 for some α ε S then  𝛾(𝛼,𝑝)(𝐺𝑆) ≼  𝛾(𝛼,𝑞)(𝐺𝑆) 

Proof: We know that every (α,q) partial weight dominating vertex set of 𝐺𝑆 is a (α,p) partial 
weight dominating vertex set of 𝐺𝑆. 

More over equality holds if and only if the 𝛾(𝛼,𝑝) partial weight dominating vertex set 

dominates a proportion q of the vertices. 

Setting q=1 we get 𝛾(𝛼,1)(𝐺𝑆) = 𝛾(𝐺𝑆)  

We get a relation between weight domination number and partial weight domination number. 

Corollary4.6.1: The upper bound for partial weight domination number is given by  𝛾(𝛼,1)(𝐺𝑆) ≼ 𝛾(𝐺𝑆)  

Theorem4.7: Let 𝐺𝑆 be a S-valued graph with weight domination number 𝛾(𝐺𝑆)  then for all 

p ε (0,1) 𝛾(𝛼,𝑝)(𝐺𝑆) + 𝛾(𝛼,1−𝑝)(𝐺𝑆) ≼ 𝛾(𝐺𝑆) + (∑ 𝜎(𝑣)𝑣∈𝑉 , 1) 

Proof: Let D be a 𝛾(𝐺𝑆) set and p ε (0,1).Let 𝐷1 be the subset of D with np≥|𝑁( 𝐷1)| and |𝑁( 𝐷1)|𝑆 = ∑ 𝜎(𝑣)𝑣∈𝑉  such that 𝐷1 is a minimal subset of D with this property. Clearly 𝛾(𝛼,𝑝)(𝐺𝑆) ≼ (∑ 𝜎(𝑣)𝑣∈𝑉 , |𝐷1|). 
Let 𝐷2 = 𝐷\𝐷1 and (𝑣, 𝜎(𝑣)) ∈ 𝐷1 

Since 𝐷1 is minimal with respect to the above property we have |𝑁 ( 𝐷1\ (𝑣, 𝜎(𝑣)))| < 𝑛𝑝   

Now, as D=(𝐷1\ (𝑣, 𝜎(𝑣))) ∪ 𝐷2 ∪ {(𝑣, 𝜎(𝑣))}                                                                                                                             
n=|𝑉| = 𝑁(𝐷) 

         ≤ 𝑁 [(𝐷1\ (𝑣, 𝜎(𝑣)))] + 𝑁[𝐷2 ∪ {(𝑣, 𝜎(𝑣))}] 
         < 𝑛𝑝 + 𝑁[𝐷2 ∪ {(𝑣, 𝜎(𝑣))}] 
 𝑁[𝐷2 ∪ {(𝑣, 𝜎(𝑣))}] > 𝑛(1 − 𝑝) 

Thus 𝐷2 ∪ {(𝑣, 𝜎(𝑣))} is an (1 − 𝑝) partial weight dominating vertex set of 𝐺𝑆 and        𝛾(𝛼,1−𝑝)(𝐺𝑆) = (|𝐷2 ∪ {(𝑣, 𝜎(𝑣))}|𝑆 , |𝐷2 ∪ {(𝑣, 𝜎(𝑣))}|) 
 𝛾(𝛼,1−𝑝)(𝐺𝑆) ≼ ((∑ 𝜎(𝑣)𝑣∈𝑉 , |𝐷2| + 1), 
 𝛾(𝛼,𝑝)(𝐺𝑆) + 𝛾(𝛼,1−𝑝)(𝐺𝑆) ≼ ((∑ 𝜎(𝑣)𝑣∈𝑉 , |𝐷1| + |𝐷2| + 1), 
                                                 ≼ ((∑ 𝜎(𝑣)𝑣∈𝑉 , |𝐷| + 1) 

                                                ≼ 𝛾(𝐺𝑆) + (∑ 𝜎(𝑣)𝑣∈𝑉 , 1) 
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Theorem 4.8:  Let 𝐺𝑆 be a S-valued graph with weight domination number 𝛾(𝐺𝑆).For any 

positive integer k≥2 with 𝑝1 + 𝑝2 + ⋯+ 𝑝𝑘 ≤ 1and 𝑝𝑖 ∈ (0,1) for all i, 𝛾(𝛼,𝑝1)(𝐺𝑆) + 𝛾(𝛼,𝑝2)(𝐺𝑆) + ⋯+ 𝛾(𝛼,𝑝𝑘)(𝐺𝑆) ≼  𝛾(𝐺𝑆) + (∑ 𝜎(𝑣)𝑣∈𝑉 , 𝑘/2)  
Proof: We prove it by induction on k. 

For k=2, 𝑝1 + 𝑝2 ≤ 1 ,hence by above theorem, 

 𝛾(𝛼,𝑝1)(𝐺𝑆) + 𝛾(𝛼,𝑝2)(𝐺𝑆) ≼ 𝛾(𝛼,𝑝)(𝐺𝑆) + 𝛾(𝛼,1−𝑝)(𝐺𝑆) ≼ 𝛾(𝐺𝑆) + (∑ 𝜎(𝑣)𝑣∈𝑉 , 1) 

Assume that k>2 and the theorem holds for integers less than k. Then at least one value of 𝑝𝑖 
must satisfy 𝑝𝑖 ≤ 1/2.Without loss of generality, let 𝑝𝑘 ≤ 1/2 By Corollary 4.1   𝛾(𝛼,1/2)(𝐺𝑆)≼ 𝛾(𝐺𝑆) + (∑ 𝜎(𝑣)𝑣∈𝑉 , ⌈1/2⌉) 

Finally using the induction hypothesis, we get  [𝛾(𝛼,𝑝1)(𝐺𝑆) + 𝛾(𝛼,𝑝2)(𝐺𝑆) + ⋯+ 𝛾(𝛼,𝑝𝑘−1)(𝐺𝑆)] + 𝛾(𝛼,𝑝𝑘)(𝐺𝑆)≼  𝛾(𝐺𝑆) + (∑ 𝜎(𝑣)𝑣∈𝑉 , 𝑘 − 12 ) + 𝛾(𝐺𝑆) + (∑ 𝜎(𝑣)𝑣∈𝑉 , ⌈1/2⌉) 

                                         ≼  𝛾(𝐺𝑆) + (∑ 𝜎(𝑣)𝑣∈𝑉 , 𝑘/2)  
Hence proved the theorem. 

Theorem4.9: Let 𝐺𝑆 be a S-valued graph with components 𝐺1𝑆, 𝐺2𝑆,….. 𝐺𝑘𝑆 Then 𝛾(𝛼,𝑝)(𝐺𝑆) ≼ ∑ 𝛾(𝛼,𝑝)(𝐺𝑖𝑆)𝑘𝑖=1  

Proof: Let 𝐷𝑖 be a 𝛾(𝛼,𝑝) set of 𝐺𝑖𝑆 , for i=1,2,….k.Then 𝑝|𝑉(𝐺)| ≼ |𝑁(𝐷𝑖)| for i=1,2,….k. 
Let D=𝐷1 ∪ 𝐷2 ∪ …∪ 𝐷𝑘.Thus |𝑁(𝐷)| = ∑ |𝑁(𝐷𝑖)|𝑘𝑖=1  

p∑ |𝑉(𝐺𝑖𝑆)|𝑘𝑖=1 ≼∑ |𝑁(𝐷𝑖)|𝑘𝑖=1  and therefore 𝑝|𝑉(𝐺)| ≼ |𝑁(𝐷)| and D is a 𝛾(𝛼,𝑝) set of 𝐺𝑆 and 

hence 𝛾(𝛼,𝑝)(𝐺𝑆) ≼ ∑ 𝛾(𝛼,𝑝)(𝐺𝑖𝑆)𝑘𝑖=1  

Theorem4.10: For any connected S-valued graph 𝐺𝑆  𝛾(𝛼,𝑖/𝑗)(𝐺𝑆)≼ 𝛾(𝐺𝑆) +(∑ 𝜎(𝑣)𝑣∈𝑉 , ⌈𝑖/𝑗⌉) 

Proof: Given a 𝛾- set D={(𝑣1, 𝜎(𝑣1)), (𝑣2, 𝜎(𝑣2))…… . . (𝑣𝑟 , 𝜎(𝑣𝑟))} partition V into sets 𝐷1, 𝐷2, ……𝐷𝑟 such that𝐷𝑖 ⊆ 𝑁[𝑣𝑖], 𝑣𝑖 ∈ 𝐷𝑖 
Without loss of generality,|𝐷1| ≥ ⋯……… .≥ |𝐷𝑟|. 
Define 𝐷´={(𝑣1, 𝜎(𝑣1)), (𝑣2, 𝜎(𝑣2))…… . . (𝑣⌈𝑖𝑟/𝑗⌉, 𝜎(𝑣⌈𝑖𝑟/𝑗⌉))} 
Claim:|⋃ 𝐷𝑘⌈𝑖𝑟/𝑗⌉𝑘=1 | ≥ 𝑖/𝑗|𝑉| 
By construction  |⋃ 𝐷𝑘⌈𝑖𝑟/𝑗⌉𝑘=1 | + |⋃ 𝐷𝑘𝑟𝑘=⌈𝑖𝑟/𝑗⌉+1 | = |𝑉| 
Since the average size of 𝐷𝑘, k=1,2…..⌈𝑖𝑟/𝑗⌉ is atleast  the average size of all 𝐷𝑘’s,the result 
become true because at worst |𝐷𝑘| = |𝐷𝑙| for all k≠l and here |⋃ 𝐷𝑘⌈𝑖𝑟/𝑗⌉𝑘=1 | ≥ 𝑖/𝑗|𝑉| 
Corollary 4.10.1:For any connected S-valued graph 𝐺𝑆  𝛾(𝛼,1/2)(𝐺𝑆)≼ 𝛾(𝐺𝑆) +(∑ 𝜎(𝑣)𝑣∈𝑉 , ⌈1/2⌉) 

Next consider some Nordhaus-Gaddum type bounds on the i/j-partial weight domination 

number on S-valued graphs 

Theorem 4.11:If 𝐺𝑆and �̅�𝑆 are connected S-valued graphs then   𝛾(𝛼,𝑖/𝑗)(𝐺𝑆) +  𝛾(𝛼,𝑖/𝑗)(�̅�𝑆) ≼ (∑ 𝜎(𝑣)𝑣∈𝑉 , 𝑛 + 2⌈𝑖/𝑗⌉)   

Proof: Applying theorem  for both 𝐺𝑆and �̅�𝑆 we get that  𝛾(𝛼,𝑖/𝑗)(𝐺𝑆)≼ 𝛾(𝐺𝑆) + (∑ 𝜎(𝑣)𝑣∈𝑉 , ⌈𝑖/𝑗⌉) 
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𝛾(𝛼,𝑖/𝑗)(�̅�𝑆)≼ 𝛾(�̅�𝑆) + (∑ 𝜎(𝑣)𝑣∈𝑉 , ⌈𝑖/𝑗⌉) 

Adding these two gives 

 𝛾(𝛼,𝑖/𝑗)(𝐺𝑆) + 𝛾(𝛼,𝑖/𝑗)(�̅�𝑆) ≼  𝛾(𝐺𝑆) + (∑ 𝜎(𝑣)𝑣∈𝑉 , ⌈𝑖/𝑗⌉)+𝛾(�̅�𝑆) + (∑ 𝜎(𝑣)𝑣∈𝑉 , ⌈𝑖/𝑗⌉) 

                                          ≼ 𝛾(𝐺𝑆) +  𝛾(�̅�𝑆) + (∑ 𝜎(𝑣)𝑣∈𝑉 , 2⌈𝑖/𝑗⌉) 

                                          ≼(∑ 𝜎(𝑣)𝑣∈𝑉 , 𝑛) + (∑ 𝜎(𝑣)𝑣∈𝑉 , 2⌈𝑖/𝑗⌉) since we already had if 𝐺𝑆 has no S-isolates then  𝛾(𝐺𝑆) +  𝛾(�̅�𝑆)≼(∑ 𝜎(𝑣)𝑣∈𝑉 , 𝑛) where n is the number of vertices 

of 𝐺𝑆 

                                          ≼(∑ 𝜎(𝑣)𝑣∈𝑉 , 𝑛 + 2⌈𝑖/𝑗⌉)   

Corollary 4.11.1: If 𝐺𝑆and �̅�𝑆 are connected S-valued graphs then   

 𝛾(𝛼,1/2)(𝐺𝑆) +  𝛾(𝛼,1/2)(�̅�𝑆) ≼ (∑ 𝜎(𝑣)𝑣∈𝑉 , 𝑛 + 2)                                        

 

5. CONCLUSIONS: 

  In S-valued graphs, we derived some results for partial weight dominating vertex sets 

and partial weight domination number. Further we have to give the generalization result for the 

upper bound of this (𝛼, 𝑝)-partial weight domination for 𝐺𝑆. 
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ABSTRACT:  A within-host mathematical model on the inflammatory mediators in COVID-

19 is presented. Homotopy Perturbation Method (HPM) is discussed which is used to compute 

an approximate analytical expression for the concentrations of healthy type II Pneumocytes, 

infected type II Pneumocytes and viral load. The validity of HPM is analyzed using the function 

pde4, a function used to solve boundary value problems in MATLAB software. Graphical 

results confirm that (HPM) is in good agreement with the numerical solution adding to the 

accuracy and efficiency of (HPM) in finding the solution of the proposed model. The achieved 

results are applicable to the entire domain. 

Keywords: Mathematical Modeling, COVID-19, Nonlinear initial value problem, Homotopy 

Perturbation Method. 

 

1. INTRODUCTION: 

The outbreak of novel coronavirus in Wuhan, China marked the introduction of a virulent 

coronavirus into human society. The causative agent of this disease is identified as Severe 

Acute Respiratory Syndrome coronavirus-2 (SARS-CoV-2). The transmission of SARS-CoV-

2 from a person to another occurs either through droplet infection or by a direct contact with 

an infected host. Also, transmissions from asymptotic carriers have also been reported. In spite 

of several researches being carried around the world, we are still lacking effective treatment 

approaches and epidemiological control measures. So, in order to break the natural history of 

the disease, it is inevitable to identify the possible interventions that help in reducing the 

severity of the virus and the growth of infected cells. Therefore, it is crucial to determine the 

coaction of viral growth along with the host immune response in the form of inflammatory 

mediators. In this paper, an analytical expression is derived for the ratio of healthy type II 

Pneumocytes 𝑆(𝑡),infected type II Pneumocytes I(t),viral load V(t) against time t by applying 

the method of Homotopy Perturbation. These analytical expressions can be useful in predicting 

the course of  the disease over time and the simulation of novel therapies under various 

mechanisms. 

2. MATHEMATICAL FORMULATION OF THE PROBLEM : 

 Recently D.K.K. Vamsi et al. [1] formulated a mathematical model with reference to the 

pathogens that deals with the natural history of covid-19. This is a first of its kind. Up to our 

mailto:pavithra-mat@sfrcollege.edu.in
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knowledge there is no analytical solution for this system of nonlinear equations. The model is 

denoted as  

SVS
dt

dS                                         (1) 

I)Iddddd(d-SV
dt

dI
654321        

         

654321 ddddddD where

  IDI-SV
dt

dI



 
                                                    (2) 

 V)Vbbbbb(b-I
dt

dV
1654321    

         

654321

1

bbbbbbB where

  VBV-I
dt

dV



 
                            (3) 

where 𝑆(𝑡) represents the healthy type II Pneumocytes, 𝐼(𝑡)represent the infected type II 

Pneumocytes , and  𝑉(𝑡)  represent the viral load . Let    be the natural birth rate of type II 

Pneumocytes. Let the natural birth rate of the virus 𝑉(𝑡) be  and the natural death rate be 

1  .We suppose that infected type II Pneumocytes 𝐼(𝑡)secrete virus V(𝑡)that attacks the healthy 

type II Pneumocytes S(t)  at rate   and the  natural death rate of  type II Pneumocytes be   . 

With the release of cytokines and chemokines IL-6 TNF-a, INF-a, CCL5, CXCL8, CXCL10, 

the infected Pneumocytes and the virus are removed at the rate 𝐵 and 𝐷die at rate 1  

respectively. The parameters ,  ,  , , 1 , B, D are positive constants . The initial conditions 

for the above equations as t=0 are     S = iS , I  = iI  , iVV  .  

Table 1 

Nomenclature 

Parameters Biological meaning 

S Healthy type II Pneumocytes 

I Infected Type II Pneumocytes 

  Natural birth rate of Type II Pneumocytes 

V Viral load 

  Rate at which healthy Pneumocytes are infected 

  Burst rate of virus particles(rate at which infected cells release the virus 

particles) 
  Natural death rate of Type II Pneumocytes 

1  Natural death rate of virus 

654321 d,d,d,d,d,d  Rates at which Infected Pneumocytes are removed because the release of 

cytokines and chemokines IL-6 TNF- , INF- , CCL5, CXCL8 , CXCL10 

respectively 

654321 b,b,b,b,b,b  Rates at which Virus is removed because of the release of cytokines and 

chemokines IL-6 TNF- , INF- , CCL5, CXCL8 , CXCL10 respectively 
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3. ANALYTICAL SOLUTION FOR THE WITHIN-HOST MATHEMATICAL 

MODEL ON THE INFLAMMATORY MEDIATORS  

 Homotopy Perturbation method is a combination of topology and classic perturbation 

techniques. It is implemented to compute an approximate solution to a system of nonlinear 

differential equations pertaining to the problem. The efficiency of the Homotopy perturbation 

method for handling and solving various non-linear structures problems can be found in  [2-5]. 

Ji Huan He employed the Homotopy perturbation method to solve the Lighthill equation [6], 

the Duffing equation [7] and the Blasius equation [8].  The homotopy perturbation method 

makes use of a small imbedding parameter p due to which very few iterations are required to 

achieve accurate result. The procedure for solving the non-linear differential equations, eqn. 

(1) - eqn. (3), by employing the method of homotopy perturbation is illustrated in Appendix A. 

The obtained results are as follows 
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where 𝑆(𝑡)represents the healthy type II Pneumocytes, I(𝑡) represent the infected type 

II Pneumocytes , and  𝑉(𝑡)represent the viral load. 

4. NUMERICAL SIMULATION 

By implementing the Homotopy Perturbation Method, the non-linear differential 

equations governing the model (1)-(3) for the predetermined initial condition are established. 

These equations are illustrated numerically by making use of Matlab pdex 4 .The obtained 

solutions in comparison with the analytical solutions admit a remarkable accuracy.  

5. RESULT AND DISCUSSION 

Fig. 1 illustrates the ratio of healthy type II Pneumocytes 𝑆(𝑡), infected type II 

Pneumocytes I(t),viral load V(t) against time t. Fig. 2-4 presents plot of the ratio of healthy 

type II Pneumocytes 𝑆(𝑡) against time t by varying parameters 𝑅1, 𝑅2, 𝑅3 respectively. From 

Fig 2, it can be noted that the ratio of healthy type II Pneumocytes 𝑆(𝑡) increases steadily due 

to the increase in natural birth rate of type II Pneumocytes. From Fig. 3, it can be seen that 

there is an deterioration in the ratio of healthy type II Pneumocytes 𝑆(𝑡). This is due to the 

increase in rate at which healthy Pneumocytes are infected. Fig. 4 depicts that there is an decline 

in the ratio of healthy type II Pneumocytes 𝑆(𝑡) which is a consequence of the natural death 

rate of these cells. . Fig. 5-6  presents plot of  the ratio of infected  type II Pneumocytes 𝐼(𝑡) 

against time t by varying parameters 𝑅3, 𝑅4 respectively. From Fig. 5, it can be observed that 

the ratio of infected  type II Pneumocytes 𝐼(𝑡) decreases steadily due to the increase in natural 

death rate of type II Pneumocytes. From Fig. 6, it can be noted that  when the infected  type II 

Pneumocytes are removed from the host  the ratio of infected  type II Pneumocytes 𝐼(𝑡) 

decreases. From this it can be inferred that the immunization drugs play a pivot role in stopping 
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the spread of the infected cells. Fig. 7- 9 represents plot of the ratio of viral load 𝑉(𝑡) against 

time t by varying parameters 𝑅5, 𝑅6, 𝑅7 respectively. From Fig. 7, it can be noted that when 

the rate of removal of the virus from the host is high the ratio of the viral load decreases. From 

Fig. 8, it can be seen that ratio of the viral load 𝑉(𝑡)decreases as the death rate of the virus 

increases. From Fig. 9, it can be observed that ratio of the viral load 𝑉(𝑡) increases when the 

rate of release of the virus from the infected cells is maximum. The higher the infected cells, 

the higher the viral load. Therapeutic agents which acts to improve the response of the host 

immune system in reducing the number of infected cells and viraload can be administered. 

 
Fig. 1. Plot of healthy type II Pneumocytes S(t) versus time. The correlation is 

assessed for Eq. (1-3) with the allotted 

values of the parameters R1 = 10;  R2 =0.005;  R3 = 0.05;  R4 = 1.0238;  R5 =0.6240;  R6 = 1.1;  R7 = 8.2 .  

 
Fig. 2. Plot of healthy type II Pneumocytes S(t) versus time t. The correlation is 

assessed for Eq. (1) with distinct values of 

the parameter R1 and the allotted values of 

other parameters R2 = 0.005;  R3 =0.05;  R4 = 1.0238;  R5 = 0.6240;  R6 =1.1; R7 = 8.2.  

 
Fig. 3. Plot of healthy type II Pneumocytes S(t) versus time t.The correlation is 

assessed for Eq. (1) with distinct values of 

the parameter R2 and the allotted values of 

other parameters R1 = 10; R3 =0.05;  R4 = 1.0238;  R5 = 0.6240;  R6 =1.1;  R7 = 8.2 .  

 
Fig. 4. Plot of healthy type II pneumoctes S(t) versus time  . The correlation is 

assessed for Eq. (1) with distinct values of 

the parameter R3 and the allotted values of 

other parameters  R1 = 10;  R2 = 0.005; R4 = 1.0238;  R5= 0.6240;  R6 = 1.1;  R7= 8.2.  
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Fig. 5.  Plot of infected  type II 

pneumoctes S(t) versus time t . The 

correlation is assessed for Eq. (2) with 

distinct values of the parameter R3 and the 

allotted values of other parameters R1 =10;  R2 = 0.005; R4 = 1.0238;  R5 = 0.6240;  R6 =1.1;  R7 = 8.2.  

 
Fig. 6.  Plot of infected  type II 

pneumoctes S(t) versus time t . The 

correlation is assessed for Eq. (2) with 

distinct values of the parameter R4 and the 

allotted values of other parameters 𝑅1 =10;  𝑅2 = 0.005; 𝑅3 = 0,05;  𝑅5 = 0.6240;  𝑅6 =1.1;  𝑅7 = 8.2. 

 

 
Fig. 7.  Plot of viral load V(t) versus time. 

The correlation is assessed for Eq. (3) with 

distinct values of the parameter R3 and the 

allotted values of other parameters  R1 =10;  R2 = 0.005; R3 = 0.05;  R4 =1.0238;  R6 = 1.1; R7 = 8.2.  

 
Fig. 8. Plot of viral load V(t) versus time. 

The correlation is assessed for Eq. (3) with 

distinct values of the parameter R6 and the 

allotted values of other parametersR1 =10;  R2 = 0.005; R3 = 0.05;  R4 =1.0238;  R5 = 0.6240; R7 = 8.2. 

 

  
Fig. 9.  Plot of viral load V(t) versus time. The correlation is assessed for Eq. (3) with distinct 

values of the parameter R7 and the allotted values of other parameters R1 = 10;  R2 =0.005; R3 = 0.05;  R4 = 1.0238;  R5 = 0.6240;  R6 = 1.1
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6. EXISTENCE AND UNIQUENESS OF THE SOLUTION : 

Theorem 1 (Uniqueness of solution) 

Let D denote the domain: 

),...,(),,...,(,, 0201002100 nn xxxxxxxxbxxatt            (6.1) 

And suppose that f(t,x) satisfies the lipschitz condition: ,),(),( 2121 xxkxtfxtf     (6.2)                                      

And whenever the pair (t,x1) and (t,x2) belong to domain D, where k is used to represent a 

positive  constant. 

Then, there exist a constant  >0such that there exist a unique (exactly One)continuous 

vector solution x(t) of the system x’=f(t,x),x(t0)=x0  in the interval  0tt . 

It is important to note that the condition (6.2) is satisfied by requirement that : 

  nji
x

f

j

i ,...,2,1,, 



  be continuous and bounded in the domain D 

Lemma 1: 

If f(t, x) has continuous partial derivative ,
j

i

x

f




 on a bounded closed convex domain R  

(i.e, convex set of real numbers), where R is used to denotes real numbers , then it satisfies a 

Lipschitz condition in R. Our interest is in the domain:                 

                           1 ≤ ≤ R.                                              (6.3)  
So, we look for a bounded solution of the form            0 < R < ∞ 

Theorem 2: 

Let D denote the domain defined in (6.1) such that (6.2) and (6.3) hold. Then there exist a 

solution of model system of equations (1)-(4) which is bounded in the domain D. 

Proof: 

Let    SVSf  1     (6.4) 

        IDI-SV2  f     (6.5) 

       VBV-I 13  f               (6.6) 

We prove that  nji
x

f

j

i ,...,2,1,, 



 is continuous and bounded, Then the partial derivative 

of all the model equations are as follows. 
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From equation (6.6),      ,00 33 
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Since all these partial derivatives are continuous and bounded, by Theorem (1), we can say 

that there exist a unique solution of (1)-( 4) in the region D. 

7. CONCLUSION :  

    In this paper, HPM is employed to attempt the solution of the model. Numerical simulations 

were performed to compare the analytical results obtained by HPM with numerical results. The 

results of the simulations were illustrated graphically. The results show that the analytical 

solution is in good agreement with the numerical results and produced accurately the same 

behavior. A clear conclusion can be drawn that HPM is highly reliable in finding the solution 

of a nonlinear differential Equation. 
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ABSTRACT:  Simple mathematical model for a bioreactor in batch mode with decay is 

presented. The two-dimensionaldifferential system describing the dynamics of thesubstrate 

andbiomass concentrations can be reduced to an algebraic equation for the biomass together 

with a single differential equation for the substrate from an analogy with the Henri Michaelis–
Menten enzyme kinetic mechanism. The existence and uniqueness of the solution for the 

bioreactor model is discussed. The simple and closed form analytical expressions for the 

concentrations of biomass, and substrate have been derived by using New Homotopy  

Perturbation method for all values of parameter. Furthermore, in this work the numerical 

simulation of the problem is also reported using Matlab program to investigate the dynamics 

of the system. Graphical results are presented and discussed quantitatively to illustrate the 

solution. A satisfactory agreement between analytical and numerical results is noted. 

 

Keywords: Mathematical Modeling, Bioreactor Model, New Homotopy Perturbation 

Method. 

 

1. INTRODUCTION: 

A bioreactor may refer to any manufactured or engineered device or a system that 

supports a biologically active environmentin which living organisms and especially bacteria 

synthesize useful substances (as interferon) or break down harmful ones (as in sewage). This 

process can either be aerobic or anaerobic. They are commonly cylindrical, ranging in size 

from litres to cubic metres, and are often made of stainless steel.These devices are being 

developed for use in tissue engineering or biochemical engineering [1-4]. 

Application of bioreactor: 

1. Producing biologic end-products (production bioreactor); 

2. Cell or stem cell expansion (cell bioreactor); and  

3. Tissue engineering (tissue bioreactor). 

mailto:pavithra-mat@sfrcollege.edu.in
https://en.wikipedia.org/wiki/Manufacture
https://en.wikipedia.org/wiki/Engineering
https://en.wikipedia.org/wiki/Aerobic_organism
https://en.wikipedia.org/wiki/Anaerobic_organism
https://en.wikipedia.org/wiki/Stainless_steel
https://en.wikipedia.org/wiki/Tissue_engineering
https://en.wikipedia.org/wiki/Biochemical_engineering


27 

 

 Mathematical formulation: 

The two-dimensional differential system describing the dynamics of the substrate and 

biomass concentrations can be reduced to an algebraic equation for the biomass together with 

a single differential equation for the substrate. Then from an analogy with the Henri– Michaelis 

– Menten enzyme kinetic mechanism a simple model is proposed for a bioreactor in batch mode 

with decay [4]. 

 

2. TERMIMOLOGY AND DIFFERENTIAL EQUATIONS: 

We   investigate (in the spirit of [4]) some models   of   batch mode bioreactors with 

decay of the form: 

xs
dt

ds
)(                                                                                                                          (1) 

xkxs
dt

dx
d )(                                                                                                                  (2) 

  

 

Monod   function [5]: 

sK

s
sm 
  *)(

          
(3) 

Substitute equation (3) in eqn. (1) & (2) 

sK

sx

dt

ds




  *

                                                                                                                       (4) 

xk
sK

sx

dt

dx
d



*

          
(5) 

with   positive initial conditions and positive α and kd. Here   s(t)  is the concentrations  of the 

substrate at time t, x(t)  is concentration of biomass at time t,  max
*  is the maximum 

specific substrate degradation rate,  kd  is a decay (death rate) constant , μ(s) is a function 
depending on the substrate s, α the growth yield coefficient. 

K are positive and represent different physical/biological quantities. With the initial conditions 

 At   t=0,  ss i            (6) 

 

At    t=0,   xx i            (7) 

 

 

Webb   function [6]: 
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Substitute equation (8) in eqn. (1) & (2) 
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    With positive initial conditions and positive α and kd. Here   s(t)  is the concentrations  of the 

substrate at time t, x(t) is  concentration of biomass at time t, *  does not represent the 

maximum of )(sw , kd is a decay (death rate) constant ,μ(s) is a function depending on the 

substrate s,α the growth yield coefficient , K & K i  are positive and represent different 

physical/biological quantities , K i  is the  inhibition constant, numerically equals the highest 

substrate concentration at which the specific growth rate is equal to one-half the maximum 

specific growth rate in the absence of inhibition, mass/volume.  is the Product formation 

constant. With the initial conditions 

 At   t=0,  ss i           (11) 

At    t=0,   xx i           (12) 

Nomenclature: 

 

Symbol Meaning Numerical value 

s Concentration of substrate 1 

x Biomass 1 

  Growth yield coefficient 1.2 

*  Maximum specific substrate  

Degradation rate 

3 

kd  Decay constant 1.4 

K Different biological quantity 2.3 

  Product formation constant 0.1 

K i  Inhibition constant 1 

 

 

Uniqueness and Existence of Solution: 

Lemma 3.1:  Let n
RD and RDf : be a non-linear vector field. f  is continuous and 

Lipchitz in  rxxDxB o  : for some real r with 0r . Then, there exists some 0  

such that 00 )(),,(' xtxxtfx  , has some unique solution. 

 

Theorem 3.1: Suppose 6,5,4,3,2,1,)(),,( 00  ixtxxtFi  exists and unique in solution. Then 

the system satisfies Lipchitz condition. 
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Proof: Using the above lemma, it is enough if we prove that 
4,3,2,1, 
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is continuous and bounded in D. 
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Now, we find the partial derivatives of these functions    
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Since the partial derivatives are continuous and bounded, we can conclude that the systems 

admits a unique solution. 

 

Approximate Analytical Expression of the Concentration of substrate and biomass Using 

New Homotopy Perturbation Method (NHPM)  

Presently, many authors have used the NHPM for solving various problems and have 

also exhibited its efficiency in solving the non-linear problems arising in the physics and 

engineering disciplines [7-10]. NHPM is the combination of topology and classical 

perturbation techniques. This has been used to solve non-linear boundary value problems, 

integral equations and many other problems [11]. Unlike other methods, NHPM uses only a 

few iterations to obtain an analytical expression and  is very effective and simple. Using this 

method, we can obtain the following approximate solution for the concentration of substrate 

and biomass [4].  
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Numerical Simulation: 

The non-linear differential eqns. (3.4)-(3.5), & (3.9)-(3.10) are solved using numerical 

methods.  The function odex4 in Matlab software is used to solve this equation. The numerical 

solutions are then compared with the approximate analytical results.It can be inferred that the 

numerical results is in a good agreement with all the experimental values of the model 

parameters. 

 

 

Monod function: 

 
 

Figure 1: Plot of correlation between 
Numerical (dotted lines) and Analytical 
(solid lines) for the  Concentration of 
Substrate s versus time t.  
 

 
 

Figure 2: Plot of correlation between 
Numerical (dotted lines) and Analytical 
(solid lines) for the  Concentration of 
Substrate s versus time t.  

 

 
Figure 3: Plot of correlation between 
Numerical (dotted lines) and Analytical 
(solid lines) for the  concentration of 
substrate s versus time t.  
 

 
Figure 4: Plot of correlation between 
Numerical (dotted lines) and Analytical 
(solid lines) for the Concentration of 
Substrate s versus time t.  
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Figure 5: Plot of correlation between 
Numerical (dotted lines) and Analytical 
(solid lines) for the concentration of 
biomass x versus time t.  

 
Figure 6: Plot of correlation between 
Numerical (dotted lines) and Analytical 
(solid lines) for the Concentration of 
Biomass x versus time t.  
 

 
Figure 7: Plot of correlation between 
Numerical (dotted lines) and Analytical 
(solid lines) for the Concentration of 
Biomass x versus time t.  
 

Webb function: 

 
 
Figure 8: Plot of correlation between 
Numerical (dotted lines) and Analytical 
(solid lines) for the Concentration of 
Substrate s versus time t.  
 

 
 
Figure 9: Plot of correlation between 
Numerical (dotted lines) and Analytical 
(solid lines) for the Concentration of   
Substrate s versus time t.   
 

 
 
Figure 10: Plot of correlation between 
Numerical (dotted lines) and Analytical 
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(solid lines) for the     Concentration   of 
Substrate s versus time t.  
 

 
 

Figure 11: Plot of correlation between 
Numerical (dotted lines) and Analytical 
(solid lines) for the Concentration of 
Substrate s versus time t.  
 

 
 
Figure 12: Plot of correlation between 
Numerical (dotted lines) and Analytical 
(solid lines) for the Concentration of 
Substrate s versus time t.  
 
 

 
Figure 13: Plot of correlation between 
Numerical (dotted lines) and Analytical 
(solid lines) for the Concentration of 
Substrate s versus time t.  

 
Figure 14: Plot of correlation between 
Numerical (dotted lines) and Analytical 
(solid lines) for the    Concentration   of   
Biomass x versus time t.    

 
Figure 15: Plot of correlation between 
Numerical (dotted lines) and Analytical 
(solid lines) for the Concentrationof 
Biomass x versus time t.  
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Figure 16: Plot of correlation between 
Numerical (dotted lines) and Analytical 
(solid lines) for the Concentration of 
Biomass x versus time t.  

 
Figure 17: Plotof correlation between 
Numerical (dotted lines) and Analytical 
(solid lines) for the Concentrationof 
Biomass x versus time t.  

 
Figure 18: Plot of correlation between 
Numerical (dotted lines) and Analytical 
(solid lines) for the Concentration of 
Biomass x versus time t.  
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3. RESULT AND DISCUSSIONS: 

The primary result of eqn. (3.23) - eqn. (3.24) represents the simple analytical 

expression pertaining to the Concentration of Substrate & Biomass respectively. Figure (1-4) 

represents the comparison of analytical and numerical stimulation of   concentration of 

substrate verses time for different values of Kkd ,,, * . From figure (1-2), it is inferred that 

concentration of substrate decreases when Kkd ,  increases for some fixed values of other 

parameter.  From figure (3-4), it is inferred that concentration of substrate decreases when 

 *,  decreases for some fixed values of other parameter. Figure (5-7) represents the 

comparison of analytical and numerical stimulation of   concentration of biomass verses time 

for different values of Kkd ,,, * . From figure (5-6), it is inferred that concentration of 

biomass decreases when Kkd ,  decreases for some fixed values of other parameter. From 

figure (7), it is inferred that concentration of biomass decreases when *  increases for some 

fixed values of other parameter. The primary result of eqn. (3.35) - eqn. (3.36) represents the 

simple analytical expression pertaining to the Concentration of Substrate & Biomass 

respectively. Figure (8-13) represents the plot of concentration of substrate verses time for 

different values of KKk id ,,,,, *  .  From figure (8-10), it is inferred that concentration of 

substrate decreases when KKk id ,,  increases for some fixed values of other parameter.  From 

figure (11-13), it is inferred that concentration of substrate decreases when  ,, *  decreases 

for some fixed values of other parameter. Figure (14-18) represents the plot of concentration 

of substrate verses time for different values of KKk id ,,,,*  .  From figure (14-18), it is 

inferred that concentration of substrate decreases when  ,,,, *
KKk id  increases for some 

fixed values of other parameter.   

 

4. CONCLUSION: 

In this paper, the system of nonlinear differential equations on the concentration of 

substrate & biomass has been solved analytically. The analytical expressions pertaining to the 

concentration of substrate & biomass for all values of the parameters are obtained using the 

New Homotopy Perturbation method. The numerical simulation of Monod and Webb functions 

shows that the numerical results are in sound agreement with analytical results. This analytical 

result helps us for the dynamics of the model and to study the correlation between the model 

parameters. 
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ABSTRACT: In this paper, define a new fuzzy graph named Double Layered Fuzzy Graph 

(DLFG) and  discussed some of its properties using order, size, μ - complement of fuzzy graphs, 

etc. The concept of connectivity plays an important role in both theory and applications of fuzzy 

graphs. The relationship between the double layered fuzzy graph and the given fuzzy graph is 

a cycle are analyzed. Also, this paper generalizes the tree concept in fuzzy labeling graph, 

which plays an important role in many areas of science and technology. 

 

Keywords: Fuzzy graph, Domination in Fuzzy graph, double layered fuzzy graph, domination 

in double layered fuzzy graphs, Perfect domination.  

 

1. INTRODUCTION: 

       The theory of fuzzy sets has been an exponential growth both within mathematics and 

in its, applications, this ranges from traditional mathematical subjects like logic, topology, 

algebra, analysis etc. information theory, artificial intelligence, operation research, neural 

networks and planning etc... Consequently fuzzy set theory has emerged as a potential area of 

interdisciplinary research and fuzzy graph theory plays a vital role. 

Rosenfeld in 1975 considered fuzzy relations on fuzzy sets and developed the theory of 

fuzzy graph , and then some basic fuzzy graph theoretic concepts and applications have been 

indicated, many authors found deeper results, and fuzzy analogues of many other graph 

theoretic concepts, this include fuzzy trees, fuzzy line graphs, operations on fuzzy graphs, 

automorphism of fuzzy graph, fuzzy interval graphs, cycles and co cycles of fuzzy graphs, 

bipartite fuzzy graph and metric aspects in fuzzy graph. 

 

2. Fuzzy Sets: 

   A fuzzy set is a set whose elements have degree of membership. Fuzzy sets are an 

extension of the classical notion of set (known as a crisp set). A fuzzy set is a pair (A, A) , 

Where A is a set and A: A → [0,1] for all x ∈ A, (A)(X) is called a grade of membership of x. 

 If A(X) = 1, then x is fully included in (A,A) and 𝑛𝑖 if x is not included in (A,A).  

If  there exists some x ∈𝐴. Such that A(X) =1, then say that (A,A) is normal. Otherwise, we 

say that (A,A) is subnormal. 

  In general a fuzzy set is denoted as A=A(X1)/X1+ (X n)/x n  which belongs to a finite universal 

set. If A(xi)/xi (a singleton) is a pair then it is said to be a “grade of member ship element”. 
Complete Bipartite Graphs: 

  A complete bipartite graph is a bipartite graph G= (V,E) where v=v 1 v 2, such that for any 

two vertices v 1 V 1 and v 2 V 2 ,v 1 ,v 2 is an edge in G. The complete bipartite graph with 

partitions |v 1 |=m and |v 2 |=n is denoted by K m, n . 
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Fuzzy Graphs 

  A fuzzy graph G = (V, σ, µ) is a triple consisting of a nonempty set V together with a pair of 

functions σ : V → [0, 1] and µ : E → [0, 1] such that for all x, y ∈ V, µ(xy) ≤ σ(x) ∧ σ(y).  
The fuzzy set σ is called the fuzzy vertex set of G and µ the fuzzy edge set of G. 
 

 

 

 

 

 

 

Complete fuzzy Graph: 

A fuzzy graph ˜G = (σ, µ) is said to be complete if µ(u, v) = σ(u)∧σ(v), for all u, v ∈ V and is 

denoted by Kσ. 

 Example : 

  Let  ˜G be fuzzy graph Define ˜G = (σ, µ) by σ(u)=0.8, σ(v)=0.9, σ(w)=0.7, σ(x)=0.6, and 
µ(u, v)=0.8, µ(v, w)=0.7, µ(w, x)=0.6, µ(x, v)=0.6. Then ˜ G = (σ, µ) is complete fuzzy graph  

 

3. A complete fuzzy graph (K3) 

To find double layered complete fuzzy graph 

Let v1=0.4 , v2=0.6 ,v3=0.8 , e1=0.4 , e2=0.6 ,e3=0.4 be an edge set. 

By definition for fuzzy graph 

(x, y) ≤ (x) ∧(y) = min((x), (y)) 

(v1,v2) = min (0.4, 0.6) = 0.4 

(v2, v3) = min (0.6, 0.8) = 0.6 

(v3, e1) = min (0.8, 0.4) = 0.4 

(e1, e2) = min (0.4, 0.6) =0.4 

(e2, e3) = min (0.6, 0.4 ) = 0.4 

(e3, e1) = min (0.4, 0.4) = 0.4 
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Consider the complete fuzzy graph with vertex 5 ,(K5) 

 

4. A complete fuzzygraph (K5) 

 

 DLCFG of K5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The conversion of complete fuzzy graph into double layered complete fuzzy graph is 

given as the complete fuzzy graph with vertex5 is(K5) 
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A complete fuzzy graph(K5) 

 

  

 
                                    DLCFG of K5 

 

Conversion of complete fuzzy graph into double layered complete fuzzy graph 

Complete Fuzzy Graph Double Layered  Complete Fuzzy Graph 

K3  DLCFG(K3) = K6 

K4  DLCFG(K4) = K10 

K5  DLCFG(K5) = K15 

K6  DLCFG(K6) = K21 

K7  DLCFG(K7) = K28 
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K8  DLCFG(K8) = K36 

K9  DLCFG(K9) = K45 

K10  DLCFG(K10) = K55 

K11  DLCFG(K11) = K66 

K12  DLCFG(K12) = K78 

K13  DLCFG(K13) = K91 

K14  DLCFG(K14) = K105 

K15  DLCFG(K15) = K120 

K16  DLCFG(K16) = K136 

K17  DLCFG(K17) = K154 

K18  DLCFG(K18) = K173 

K19  DLCFG(K19) = K192 

K20  DLCFG(K20) = K212 

K21  DLCFG(K21)  =K233 

K22  DLCFG(K22)  =K255 

 

Theorem 1.1.   

If G1 : (σ1, µ1) and G2 : (σ2, µ2) are complete fuzzy graphs, then G1 ⊓ G2 is complete.  

Proof: 

 If (u1, v1)(u2, v2) ∈ E,   then  G1 and G2 are complete  

and  (µ1 ⊓ µ2)((u1, v1)(u2, v2)) = µ1(u1,u2) ∧ µ2(v1, v2) = σ1(u1) ∧ σ1(u2) ∧ σ2(v1) ∧ σ2(v2)  

= (σ1 ⊓ σ2)((u1, v1)) ∧ (σ1 ⊓ σ2)((u2, v2)).  

Hence, G1 ⊓ G2 is complete. 

Theorem 1.2 

If G1 : (σ1, µ1) and G2 : (σ2, µ2) are complete fuzzy graphs, then G1 • G2 is complete.  

Proof : 

 If (u,v1) and (u,v2) ∈ E, 

 then (µ1 • µ2)((u,v1)(u,v2)) = σ1(u) ∧ µ2(v1,v2) = σ1(u1)∧σ2(v1)∧σ2(v2)     (since G2 is 

complete)  

  = (σ1 • σ2)((u,v1)) ∧ (σ1 • σ2)((u,v2)).  

If (u1,v1)(u2, v2) ∈ E, then  G1 and G2 are complete 

If (µ1 • µ2)((u1,v1)(u2,v2)) = µ1(u1,u2) ∧µ2(v1,v2)  

= σ1(u1) ∧ σ1(u2) ∧ σ2(v1) ∧ σ2(v2)  

= (σ1 • σ2)((u1, v1)) ∧ (σ1 • σ2)((u2, v2)).  

Hence, G1 • G2 is complete.   

 

5. CONCLUSION : 

     Fuzzy graphs have numerous applications in different parts of Science and Engineering 

like broadcast communications, producing, Social Network, man-made reasoning, data 

hypothesis, neural systems etc. 
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ABSTRACT: In this paper, we define the uniformity on BP-algebras and show how to connect 

uniform topology with the BP-ideals on BP-algebras. We prove that it is natural for BP-

algebras to be topological BP-algebras. Moreover, we find some properties of this structure. 

Also we explain the uniformity condition of BP-algebras with examples and how it induces the 

topology on BP-algebras. 

 

Keywords: BP-algebras, Uniformity, BP-ideal, Topological BP-algebras. 
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1. INTRODUCTION 

 The two classes of abstract algebras namely BCK-algebras and BCI-algebras were 

introduced by Imai Y and Iseki K [6]. It is known that the class of BCK-algebras is a proper 

subclass of the class of BCI-algebras. Hu Q P and Li X [5] introduced a wide class of abstract 

algebras: BCH-algebras. Also it is known that the class of BCI-algebras is a proper subclass of 

the class of BCH-algebras. Ahn S.S and Han J.S [1] introduced the concepts of BP-algebras 

and they discussed some relations with BF-algebras. Alo R and Deeba E [3] attempted to study 

the topological concepts of the BCK-structure. Ahn S.S and Kwon S H [2] studied the 

topological properties in BCC-algebras. Dudeck W A and Zhang X [4] discussed on ideals and 

congruence in BCC-algebras. In 2017, Jansi M and Thiruveni V [7] studied the topological 

structures on BCH-Algebras. In 2019, they [8] also introduced topological BCH-groups. 

Recently, Complementary Role of Ideals in TSBF-algebras was discussed by Jansi M and 

Thiruveni V [9]. Nagamani N and Kandaraj N [10, 11] discussed the topological concepts and 

structures on d-algebras.  

 Motivated by this, in this paper, we study the issue of attaching topologies to BP-

algebras in as natural a manner as possible. We may use the class of BP-ideals of a BP-algebras 

as the underlying structure whence a certain uniformity and hence a topology is derived, which 

provides a natural connection between the concept of BP-algebras and the concept of topology. 

Thus a BP-algebra becomes a topological BP-algebra. 

 

mailto:abisha1997@gmail.com
mailto:n.kandarajsbkc1998@gmail.com
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2. PRELIMINARIES : 

Definition 2.1 [1].Let X be a set with a binary operation ∗ and a constant 0. Then (X,∗, 0) is 

called a BP-algebra if it satisfies the following axioms. 

1. x∗ x = 0 

2. x∗ (x ∗ y) = y 

3. (x∗ z) ∗ (y ∗ z) = x ∗ y for any x, y, z ∈ 𝑋. 

Proposition 2.2 [1]. If (X,∗, 0) is a BP-algebra, then the following results are hold:  

For any x, y ∈ 𝑋 

1. 0 ∗ (0 ∗ x) = x. 

2. x∗ (x∗ y) = y.  

3. x∗ 0 = x. 

4. x∗ y = 0 implies y ∗ x = 0. 

5. 0 ∗ x = 0 ∗ y implies x = y. 

6. (x∗ z) ∗ (y ∗ z) =  (x ∗ y) 

7. 0 ∗ x = x implies x ∗ y = y ∗ x    

Proposition 2.3 [1]. If (X, ∗, 0) is a BP-algebra with (x ∗ y) ∗ z = x ∗ (z ∗ y) for any x, y, z ∈ 𝑋, then 0 ∗ x = x for any x ∈ 𝑋. 

Theorem 2.4 [1]. If (X, ∗, 0) is a BP-algebra with x ∗ y = 0 and y ∗ x = 0, then x = y.  

Definition 2.5 [4]. Let S be a non-empty subset of a BP-algebra X, then S is called BP-

subalgebra of X if x ∗ y ∈ S for all x, y ∈ S. 

Definition 2.6 [4]. Let (X,∗, 0) be a BP-algebra and I be a non-empty subset of X. Then I is 

called an ideal of X, if it satisfies the following conditions. 

1.0 ∈ I. 

2. x ∗ y ∈ I and y ∈ I ⟹ x ∈ I. 

Definition 2.7 [4]. Let (X, ∗, 0) be a BP-algebra and I be a non-empty subset of X. Then I is 

called a BP-ideal of X if it satisfies the following conditions: 

1.0 ∈ I. 

2. (x ∗ y) ∗ z ∈ I and y ∈ I ⟹ x ∗ z ∈ I. 

Lemma 2.8 [4]. In a BP-algebra X any BP-ideal I is an ideal in X. 

Remark2.9 [4]. Any BP-ideal of a BP-algebra is subalgebra, but converse is not true. 

2. Any ideal of a BP-algebra is subalgebra, but converse is not true. 

Definition 2.10 [2]. Let X be a BP-algebra. An equivalence relation ∼ on X is called a left 

congruence if x∼ y implies u ∗ x ∼ u ∗ y, where x, y, u ∈ X.  

An equivalence relation ∼ on X is called a right congruence if x∼ y implies x ∗ u ∼ y ∗ u, 

where x, y, u ∈ X. 

Definition 2.11[2]. Let X be a BP-algebra. An equivalence relation ∼ on X is called a 

congruence if x∼ y, u ∼v  imply x ∗ u ∼ y ∗ v, where x, y, u, v ∈ X.  

Proposition 2.12[2]. Let X be a BP-algebra and ∼ be an equivalence relation on X. Then ∼  is 

congruence if and only if it is both a left congruence and a right congruence. 

Definition 2.13[2]. Let (X, ∗, 0) be a BP-algebra. We can define a binary relation “≤” by x ≤ 

y if and only if x ∗ y = 0, is called a BP-order on X. Then it is easy to show that ≤ is a partial 

order on X 
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Theorem 2.14 [7]. Let X be a set and S ⊆ P (X × X) be a family such that for every U ∈ S the 

following conditions hold: 

(a). △⊆ U 

(b). U-1 contains a member of S. 

(c). there exists a V ∈ S such that V ∘ V ⊆ U. Then there exists a unique uniformity u, for which 

S is a subbase. 

 

3. UNIFORMITY ON BP-ALGEBRAS : 

 In this section we introduce the uniformity condition on BP-algebras with example and 

how it induces the topology on BP-algebras. 

Definition3.1: Let B be a BP-algebra and U and V be any subsets of B × B.                         Define 

X ° Y = {(a, b) ∈ B × B / for some c ∈ B, (a, c) ∈ X and (c, b) ∈ Y}, 

X-1 = {(a, b) ∈ B × B / (b, a) ∈ X}, ∇ = {(a, a) / a ∈ B}. 

Example 3.2: Consider a BP-algebra (B = {0, p, q, r},∗, 0) with Cayley table ∗ 0 p q r 

0 0 q p r 

p p 0 r q 

q q r 0 p 

r r p q 0 

 

Let X = {(0, 0), (q, 0)} and Y = {(0, r), (0, q)} 

X ° Y = {(0, q), (0, r), (q, q), (q, r)}, 

    X-1 = {(0, 0), (0, q)}, ∇ = {(0, 0), (p, p), (q, q)}. 

Definition 3.3: Let (B,∗, 0) be a BP-algebra. A non-empty collection 𝕂 of subsets of B × B 

is called uniformity on B if it satisfies the following axioms. 

(U1) ∇⊆ X for any X ∈ 𝕂, 

(U2) If X ∈ 𝕂, then X-1∈ 𝕂,   

(U3) If X ∈ 𝕂, then there exist a Y ∈ 𝕂 such that Y ° Y  ⊆ X, 

(U4) If X, Y ∈ 𝕂 , then X ∩ Y∈ 𝕂,    

(U5) If X ∈ 𝕂 and X ⊆ Y ⊆ B × B, then Y ∈ 𝕂 . 

The pair (B, 𝕂) is called a uniform structure.  

Example 3.4: Let (B = {p, 0}, ∗, 0) be a BP-algebra.                                                               

Define 𝕂 = {{(0, p), (p, p)}, {(0, 0), (p, p), (p, 0)}, {(0, 0), (p, p), (0, p)},                                          

          {(0, 0), (p, p), (p, 0), (0, p)}}. 

The pair (B,𝕂) is a uniform structure. 

Theorem 3.5: If I is an ideal of a BP-algebra B, then the relation defined on B by a ~I b if 

and only if  a ∗ b,  b ∗ a ∈ I is an equivalence relation on B. 

Proof: Let I be an ideal of a BP-algebra B. 

Reflexive: 

Clearly the relation ~I is reflexive. 
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Symmetric: 

Since a ∗ a = 0 and 0 ∈ I  

If a ~I b implies a ∗ b,  b ∗ a ∈ I  ⟹b∗ a,  a ∗ b ∈ I  ⟹  b ~I a 

The relation ~I is symmetric. 

Transitive: 

If  a ~I b and b ~I c ⟹ a ∗ b,  b ∗ a ∈ I and b ∗ c,  c ∗ b ∈ I . 

Since I is an ideal, (a ∗ b) ∗ (c ∗ b) = (a ∗ c) ∈ I.  (By proposition 2.2(6)) 

Similarly (c ∗ b) ∗ (a ∗ b) = (c ∗ a) ∈ I. 

Therefore the relation ~I is transitive. Hence the relation ~I is an equivalence relation. 

Definition 3.6: Let (B, ∗, 0) be a BP-algebra, then the Congruence relation on B is an 

equivalence relation ≅  on the elements of B satisfying h1≅ h2 and f1≅ f2 

   ⟹ h1∗ f1 = h2∗ f2 for all h1, h2, f1, f2∈ B. 

Theorem 3.7: Let B be a BP-algebra and I is an ideal on B, then the relation ~I is a Congruence 

relation on B. 

Proof. From theorem 3.5, the relation ~I   is an equivalence relation.  

It is enough to prove that , if  a ~I b and f ~I n, then a ∗ f ~I  b ∗ n. 

Since a ~I b and f ~I n, then a ∗ b, b ∗ a, f ∗ n, n ∗ f ∈ I . 

To prove (a ∗ f) ∗ (b ∗ n) and  (b ∗ n) ∗ (a ∗ f)  ∈ I . 

 Consider ((a ∗ f) ∗ (b ∗ n)) ∗ (n ∗ f)  =  ((a ∗ f) ∗ (n ∗ f)) ∗ (b ∗ n)  

     = (a∗ n) ∗ (b ∗ n)   

     = (a ∗ b)  ∈ I    (By proposition) 

Since I is an ideal in B, (a ∗ f) ∗ (b ∗ n) ∈ I  

Similarly, we can prove (b ∗ n) ∗ (a ∗ f) ∈ I 

Hence the relation ~I is a Congruence relation on B. 

Theorem 3.8. Let I be an ideal of a BP-algebra B.  

We define XI = {(a, b) ∈ B × B / a ∗ b ∈ I and b ∗ a ∈ I} and let 𝕂+= {UI / I is an ideal of B}. 

Then 𝕂+ satisfies the axioms U1 to U4. 

Proof. [U1]. Let (a, a) ∈ ∇ , since a ∗ a = 0 ∈ I, (a ∗ a) ∈ XI  

Hence  ∇ ⊆ XI   for any XI∈ 𝕂+ 

[U2]. For any XI∈ 𝕂+ 

(a, b) ∈ XI⟺ a ∗ b ∈ I and b ∗ a ∈ I 

 ⟺b~I a 

 ⟺ (b. a) ∈ XI ⟺ (a. b) ∈ XI
-1 

Hence XI
-1 = XI∈ 𝕂+ 

[U3]. For any XI∈ 𝕂+, the transitivity condition of ~I  implies that XI° X I⊆ XI 

[U4]. For any XM and XN∈ 𝕂+ 

To prove XM∩ XN∈ 𝕂+ 

(a, b) ∈ XM∩ XN⟺ (a, b) ∈ XM and (a, b) ∈ XN 

  ⟺a∗ b,  b ∗ a ∈ M ∩ N 

  ⟺a~ M ∩ N b 

 ⟺ (a,b) ∈ XM ∩ N 
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Since M ∩ N is an ideal of BP-algebra, XM∩ XN = XM ∩ N ∈ 𝕂+ 

Hence the theorem. 

Theorem 3.9: Let 𝕂 = {X ⊆ B × B / XI⊆X for some XI∈ 𝕂+}. Then 𝕂 satisfies the axioms 

for a uniformity on BP-algebra B and hence the pair (B, 𝕂) is a uniform structure. 

Proof. By theorem 3.8, the collection 𝕂 satisfies the axioms U1 to U4. 

It is enough to prove that 𝕂 satisfies U5. 

Let X ∈ 𝕂 and X ⊆Y ⊆ B × B, then there exist a XI⊆X ⊆ Y. 

This means that Y∈ 𝕂 .  

Hence the theorem. 

Notation 3.10: Let B be a BP-algebra, a ∈ B and X ∈ 𝕂. 

Define X[a] = {b ∈ B / (a, b) ∈ X}. 

Theorem 3.11: Let B be a BP-algebra. Then  

T = {G⊆ B/ ∀ a ∈ G, there exist X ∈ 𝕂, X[a] ⊆G} is a topology on B 

Proof: Since ∅ and the set B belongs to T. 

From the definition, clearly T is closed under arbitrary unions. 

Finally we prove that T is closed under the finite intersection. 

Let G, H belongs to T and suppose a ∈ G ∩ H, then there exists X and Y ∈ 𝕂 such that X[a] ⊆ 

G and Y[a] ⊆ H  

Let U = X∩Y, then U ∈ 𝕂 

Also U[a] ⊆ X[a] ∩ Y[a] and so U[a] ⊆ G ∩ H  

Therefore G ∩ H ∈ T.  

Thus T is a topology of B.  

Hence the theorem. 

Definition 3.12: Let B be a BP-algebra. For any a ∈ B, X [B] is an open neighborhood of a. 

Example 3.13: Let B = {0, p, q} be a non-empty set and the collection 𝕂 = {{∇, (p, 0), (0, p), (0, q), (q, 0), (q, p)}, {∇, (p, 0), (0, p), (0, q), (q, 0), (p, q)}} is a uniform 

structure. 

Define a topology T = {B, ∅, {p, 0}, {q}}                               (By using 3.9) 

Then T is called the uniform topology on B induced by 𝕂 

Example 3.14: Let B = {0, p, q, r} be a BP-algebra with the Cayley table given below. ∗ 0 p q 

0 0 q p 

p p 0 q 

q q p 0 

 

It is easy to prove that A = {0, P}, E = {0, q}, D = {0} and B are the only ideals in B. 

We can see that XA = ∇ ∪ {(0, p), (p, 0)} 

XE = ∇ ∪ {(q, 0), (0, q)}, XD = ∇ and XB = B × B 

Therefore 𝕂+ = {XD, XE, XA, XB} and  𝕂 = {X ⊆ B × B / XA⊆ X for some XA∈ 𝕂+}. 

If X = XA, then X [0] = X[p] = {0, p}  

Therefore T =  {C ⊆ B, ∀ a ∈ C, there exist X ∈ 𝕂,  X[a] ⊆C} ⊇{B, ∅, {q},{0, p}}. 

Since {B, ∅, {q},{0, p}} is a topology on B, the topology Ton B induced by an ideal. 
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A = {0, p} relative to XA 

Let A = {0}, then X[a] = {a} ∀ a ∈ B and we define T = 2a, the discrete topology 

Moreover, if we consider B as an ideal of B, then X[a] = B, for all a ∈ B and  

we get T = {∅, B}, the indiscrete topology. a∗b 

Theorem 3.15: Let I be a BP-ideal of a BP-algebra B. If we define a binary operation on the 

quotient set B∕I = {Ia / a ∈ B} by Ia∗ Ib = Ia∗b , then (B∕I, ∗, I0) is a BP-algebra called the 

Quotient algebra of B relative to I.   

Proof. If  Ia = Ia1 and Ib = Ib1,  then a ∼ a1 and b ∼ b1 

Hence  ∼ is a congruence relation. 

Therefore Ia∗ Ib = Ia∗b = = Ia1∗b1 = Ia1∗ Ib1 

Thus ∗ is well defined on B∕I. 

Assume that Ia∗ Ib = Ib∗ Ia = I0, then Ia∗b = Ib∗a = I0 

Hence a ∗ b ∼ 0 and b ∗ a ∼ 0. 

Therefore (B∕I, ∗, I0)  is a edge BP-algebra  

By the proposition 2.2 (2) and (6), we have (B∕I, ∗, I0)  is a BP-algebra. 

 

4. CONCLUSION: 

S.S. Ahn and J.S. Han [1] introduced the concept of BP-algebras, which is generalization of B-

algebras. In this paper we show that how to connect the topology concepts with BP-algebras. 
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ABSTRACT: Motivated by some results on (𝛼, 𝛽) – reverse derivations on prime and 

semiprime rings in [4]. The authors investigated some properties of (𝛼, 𝛽) – reverse derivations 

on prime and semiprime rings. The main results of that paper is if R is a prime ring of 

characteristic≠ 2, (𝛼, 𝛽) - reverse derivation and generalized  (𝛼, 𝛽) – reverse derivation are 

(𝛼, 𝛽) derivations and generalized (𝛼, 𝛽)derivations of R, respectively and also derived some 

necessary and sufficient condition for (𝛼, 𝛽) – reverse derivations exist. Now in this paper I 

also investigate same thing in prime and semiprime semiring. 

 

Keywords: Semiring, Prime, Semiprime, Reverse Derivation, Generalized Reverse Derivation, 

Generalized (𝛼, 𝛽) – reverse derivation. 

 

1. INTRODUCTION: 

A Semiring (S,+,•) is a non-empty set S together with two binary operations, + 

and • such that, i) (S,+) is monoid and (S,•) is semigroup ii) For all a, b, c ∈ S, a . (b + c) = a . 

b + a . c and     (b + c) . a = b . a + c . a. A semiring S is said to be n - torsion free if nx = 0 ⇒ 

x = 0, ∀x ∈ S. A semiring S is Prime if xSy = 0 ⇒ x = 0 or y = 0, ∀ x, y ∈ S and S is 

Semi Prime if   x S x = 0 ⇒ x = 0, ∀ x ∈ S. 

For 𝑥, 𝑦 ∈ 𝑆, 𝑥𝑦 − 𝑦𝑥 is denoted by [x, y] and 𝑥𝛼(𝑦) − 𝛽(𝑦)𝑥 is denoted by [𝑥, 𝑦]𝛼,𝛽 

An additive mapping 𝑑: 𝑆 → 𝑆 is called a derivation if d(x y) = d(x) y + x d(y) , ∀ x,y ∈ S. For 

a fixed 𝑎 ∈ 𝑆, 𝐼𝑎: 𝑆 → 𝑆 is given by 𝐼𝑎(𝑥) = [𝑎, 𝑥], is called an inner derivation determined by 

a.  

              An additive mapping 𝐷 ∶ 𝑆 → 𝑆 is called a generalized derivation if there exist a 

derivation d of S such that 𝐷(𝑥𝑦) = 𝐷(𝑥)𝑦 + 𝑥 𝑑(𝑦), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝑆. 𝐶𝛼,𝛽 = {𝑐 ∈ 𝑆 / 𝑐𝛼(𝑠) =  𝛽(𝑠)𝑐 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆} is known as (𝛼, 𝛽) - center of S. An additive mapping 𝑑: 𝑆 →𝑆 is called an (𝛼, 𝛽) – derivation if 𝑑(𝑥𝑦) =  𝑑(𝑥)𝛼(𝑦) +  𝛽(𝑥)𝑑(𝑦), for all x,y ∈ S. An 

additive mapping 𝐷: 𝑆 → 𝑆 is said to be a generalized (𝛼, 𝛽) – derivation associated with (𝛼, 𝛽) 

– derivation d  if 𝐷(𝑥𝑦) = 𝐷(𝑥)𝛼(𝑦) + 𝛽(𝑥)𝑑(𝑦), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝑆. For fixed 𝑎 ∈ 𝑆, 𝐼𝑎: 𝑆 →𝑆 is given by 𝐼𝑎(𝑥) = [𝑎, 𝑥]𝛼,𝛽 which is called  (𝛼, 𝛽) – inner derivation determined by a. 

 Throughout this paper, S is a semiring, Z(S) is the center of S, 𝛼, 𝛽 are homomorphisms 

of S and 𝐶𝛼 = {𝑐 ∈ 𝑆/𝑐𝛼(𝑥) = 𝛽(𝑥)𝑐, 𝑓𝑜𝑟𝑎𝑙𝑙 𝑥 ∈ 𝑆}. We use the basic commutator identities. 

i) [x,yz] = y [x,z] + [x,y]z    ii) [x,yz]𝛼,𝛽= [x,y]𝛼,𝛽 𝛼(𝑧) + 𝛽(𝑦) [x,z]𝛼,𝛽 
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             The main result of this paper is for a semiprime semiring S, any (𝛼, 𝛽) – reverse 

derivation is a (𝛼, 𝛽) – derivation mapping S into the center. The another main result of this 

paper is , if S is a prime semiring, D is a non-zero (𝛼, 𝛽) – reverse derivation of S, then D is a 

(𝛼, 𝛽) – derivation of S and if D is a nonzero generalized (𝛼, 𝛽)- reverse derivation of S, then 

D is a generalized (𝛼, 𝛽) – derivation of S. 

 

2. (𝜶, 𝜷) – REVERSE DERIVATION ON PRIME SEMIRING 

Definition : 2.1  

 An additive mapping 𝐷 ∶ 𝑆 → 𝑆 is said to be an (𝛼, 𝛽) – reverse derivation of S if 𝐷(𝑥𝑦) = 𝐷(𝑦)𝛼(𝑥) + 𝛽(𝑦)𝐷(𝑥), ∀𝑥, 𝑦 ∈ 𝑆. 

Definition : 2.2 

            Let d be a (𝛼, 𝛽) – reverse derivation. An additive mapping 𝐷: 𝑆 → 𝑆 is said to be a 

generalized (𝛼, 𝛽) – reverse derivation associated with d if  𝐷(𝑥𝑦) = 𝐷(𝑦)𝛼(𝑥) + 𝛽(𝑦) 𝑑(𝑥),∀𝑥, 𝑦 ∈ 𝑆 

Theorem : 2.3 

 Let S be a prime semiring and 𝛽 be a automorphisms of S. A mapping D on S is a non-

zero (𝛼, 𝛽) – reverse derivation  of S iff S is commutative and D is an ordinary (𝛼, 𝛽) – 

derivation of S. 

 

Proof: 

Let S be a prime semiring and 𝛼, 𝛽 be a automorphisms of S. 

Assume that D is a (𝛼, 𝛽) – reverse derivation of S. 

Let 𝑥, 𝑦, 𝑧 ∈ 𝑆. Then 𝐷(𝑥(𝑦𝑧)) = 𝐷(𝑦𝑧)𝛼(𝑥) + 𝛽(𝑦𝑧)𝐷(𝑥) 

                                                   = 𝐷(𝑧)𝛼(𝑦)𝛼(𝑥) + 𝛽(𝑧)𝐷(𝑦)𝛼(𝑥) + 𝛽(𝑦)𝛽(𝑧)𝐷(𝑥) -----(1) 

Also 𝐷((𝑥𝑦)𝑧) =  𝐷(𝑧)𝛼(𝑥)𝛼(𝑦) + 𝛽(𝑧)𝐷(𝑦)𝛼(𝑥) + 𝛽(𝑧)𝛽(𝑦)𝐷(𝑥)   --------------------(2) 

From (1) and (2), we get 𝐷(𝑧)𝛼([𝑥, 𝑦]) + 𝛽([𝑧, 𝑦])𝐷(𝑥) =  0      -----------------------------(3) 

                            Put y = x,  𝛽([𝑧, 𝑥])𝐷(𝑥) =  0, ∀ 𝑥, 𝑧 ∈ 𝑆          -----------------------------(4) 

Replace z by zy in (4), 𝛽(𝑧)𝛽([𝑦, 𝑥])𝐷(𝑥) + 𝛽([𝑧, 𝑥])𝛽(𝑦)𝐷(𝑥) =  0 

Using (4), we get 𝛽([𝑧, 𝑥])𝛽(𝑦)𝐷(𝑥) =  0 , ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑆 

Since S is prime, 𝑥 ∈ 𝑍(𝑆)𝑜𝑟 𝐷(𝑥) =  0, ∀ 𝑥 ∈ 𝑆 

Let 𝐴 = {𝑥 ∈ 𝑆/𝑥 ∈ 𝑍(𝑆)} and 𝐵 = {𝑥 ∈ 𝑆/𝐷(𝑥) = 0}. Clearly A and B are additive 

subgroups of S such that 𝑆 = 𝐴 ∪ 𝐵. We know that the union of subgroups is subgroup iff one 

is contained in the other. Therefore S = A or S = B. 

       If S = B, then D = 0. 

    to our assumption ∴ 𝑆 = 𝐴 

So S is commutative, 𝐷(𝑥𝑦) = 𝐷(𝑦𝑥) =  𝐷(𝑥)𝛼(𝑦) + 𝛽(𝑥)𝐷(𝑦) 

Hence D is an (𝛼, 𝛽)- derivation. 

Example: 1 Consider the Semiring 𝑀2(𝑆) = {(𝑎 0𝑏 𝑎) /𝑎, 𝑏 ∈ 𝑆}. Define 𝐷: 𝑆 → 𝑆 by 𝐷(𝑥) =(0 0𝑏 0), 𝛼(𝑥) = (𝑎 0𝑏 𝑎) , 𝛽(𝑥) =  (𝑎 00 𝑎) , ∀𝑥 ∈ 𝑀2(𝑆). 

It is easy to verify that D is (𝛼, 𝛽) − reverse derivation and ordinary (𝛼, 𝛽) − derivaton. 
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Example : 2 

Consider the Semiring 𝑀2(𝑆) = {(𝑎 0𝑏 𝑐) /𝑎, 𝑏 ∈ 𝑆}. Define 𝐷: 𝑆 → 𝑆 by 𝐷(𝑥) = (0 0𝑏 0), 𝛼(𝑥) = (𝑐 0𝑏 𝑎) , 𝛽(𝑥) =  (𝑎 00 𝑐) , ∀𝑥 ∈ 𝑀2(𝑆). 

It is easy to verify that D is neither (𝛼, 𝛽) − reverse derivation nor ordinary (𝛼, 𝛽) − derivaton. 

Theorem : 2.4 

 Let S be a prime semiring and 𝛽 be automorphisms of S. A mapping D is a non-zero 

generalized (𝛼, 𝛽)-reverse derivation with (𝛼, 𝛽)-reverse derivation d of S iff S is commutative 

and D is an ordinary generalized (𝛼, 𝛽) – derivation with a (𝛼, 𝛽) – derivation d of S. 

Proof: 

Let D be a non-zero generalized (𝛼, 𝛽)-reverse derivation with (𝛼, 𝛽)-reverse derivation d of S. 

Since d is a (𝛼, 𝛽)-reverse derivation, by previous theorem, S is commutative and d is a (𝛼, 𝛽)- 

derivation. 

Since S is commutative , 𝐷(𝑥𝑦) =  𝐷(𝑦𝑥) = 𝐷(𝑥)𝛼(𝑦) + 𝛽(𝑥)𝑑(𝑦), ∀𝑥, 𝑦 ∈ 𝑆 ∴ D is an ordinary generalized (𝛼, 𝛽) – derivation of S with (𝛼, 𝛽) – derivation d of S. 

 

3. (𝜶, 𝜷) – REVERSE DERIVATION ON SEMIPRIME SEMIRING 

Lemma: 3.1 

 Let S be a 2-torsionfree semiprime semiring, 𝑠 ∈ 𝑆, 𝛼, 𝛽 be epimorphisms of S and 𝐷: 𝑆 → 𝑆 such that 𝐷(𝑥) = 𝑠𝛼(𝑥) + 𝛽(𝑥)𝑠. If D is a (𝛼, 𝛽) – reverse derivation of S then D = 

0 and s = 0. 

Proof: 

Let S be a 2-torsionfree semiprime semiring, 𝑠 ∈ 𝑆, 𝛼, 𝛽 be epimorphisms of S and 𝐷: 𝑆 → 𝑆 

such that 𝐷(𝑥) = 𝑠𝛼(𝑥) + 𝛽(𝑥)𝑠. 

For any 𝑥, 𝑦 ∈ 𝑆, 𝐷(𝑥𝑦) = 𝑠𝛼(𝑥𝑦) + 𝛽(𝑥𝑦)𝑠 

On the other hand,      𝐷(𝑥𝑦) = 𝐷(𝑦)𝛼(𝑥) + 𝛽(𝑦)𝐷(𝑥) 

    = 𝑠𝛼(𝑦)𝛼(𝑥) + 𝛽(𝑦)𝑠𝛼(𝑥) + 𝛽(𝑦)𝑠𝛼(𝑥) + 𝛽(𝑦)𝛽(𝑥)𝑠  

    = 𝑠𝛼(𝑦𝑥) + 2𝛽(𝑦)𝑠𝛼(𝑥) + 𝛽(𝑦𝑥)𝑠 

    = 𝐷(𝑦𝑥) +  2𝛽(𝑦)𝑠𝛼(𝑥) ∴ 𝐷([𝑥, 𝑦]) =  2𝛽(𝑦)𝑠𝛼(𝑥), ∀ 𝑥, 𝑦 ∈ 𝑆    -------------- (5) 

Similarly, 𝐷([𝑦, 𝑥]) =  2𝛽(𝑥)𝑠𝛼(𝑦), ∀ 𝑥, 𝑦 ∈ 𝑆 

Since 𝐷([𝑥, 𝑦]) + 𝐷([𝑦, 𝑥]) =  0,     2 [𝛽(𝑦)𝑠𝛼(𝑥) + 𝛽(𝑥)𝑠𝛼(𝑦)] = 0 

Since S is 2- torsion free , 𝛽(𝑥)𝑠𝛼(𝑦) + 𝛽(𝑦)𝑠𝛼(𝑥) = 0  -------------- (6) 

Replacing y by yz ,               𝛽(𝑥)𝑠𝛼(𝑦𝑧) + 𝛽(𝑦𝑧)𝑠𝛼(𝑥) = 0 𝛽(𝑥)𝑠𝛼(𝑦)𝛼(𝑧) + 𝛽(𝑦)𝛽(𝑧)𝑠𝛼(𝑥) =  0 𝛽(𝑥)𝑠𝛼(𝑥)𝛼(𝑧) + 𝛽(𝑥)𝛽(𝑧)𝑠𝛼(𝑥) =  0 𝛽(𝑥)[𝑠𝛼(𝑥)𝛼(𝑧) + 𝛽(𝑧)𝑠𝛼(𝑥)] =  0 

Since S is semiprime, 𝑠𝛼(𝑥)𝛼(𝑧) + 𝛽(𝑧)𝑠𝛼(𝑥) =  0 [𝑠𝛼(𝑧) + 𝛽(𝑧)𝑠]𝛼(𝑥) =  0 𝑠𝛼(𝑧) + 𝛽(𝑧)𝑠 = 0, ∀𝑧 ∈ 𝑆 

ie, D = 0. (5) gives, 2𝛽(𝑦)𝑠𝛼(𝑥) = 0, ∀ 𝑥, 𝑦 ∈ 𝑆 

Since S is 2-torsionfree semiprime semiring, c = 0. 
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Lemma : 3.2 

Let S be a semiring, 𝑎, 𝑏 ∈ 𝑆 , 𝛼, 𝛽 be mappings of S and 𝐷(𝑥) =  𝑎𝛼(𝑥) + 𝛽(𝑥)𝑏: If D is a (𝛼, 𝛽) −reverse derivation of S then the equality 𝑎(𝛼(𝑥𝑦) − 𝛼(𝑦)𝛼(𝑥)) + 𝛽(𝑥𝑦) −𝛽(𝑦)𝛽(𝑥))𝑏 = 𝛽(𝑦)(𝑏 + 𝑎)𝛼(𝑥) is satisfied. 

Proof: 

For any 𝑥, 𝑦 ∈ 𝑆, 𝐷(𝑥𝑦) =  𝑎𝛼(𝑥𝑦) + 𝛽(𝑥𝑦)𝑏 

Since D is (𝛼, 𝛽) −reverse derivation of S, 

 𝐷(𝑥𝑦) = 𝐷(𝑦)𝛼(𝑥) + 𝛽(𝑦)𝐷(𝑥) 

    = 𝑎𝛼(𝑦)𝛼(𝑥) + 𝛽(𝑦)𝑏𝛼(𝑥) + 𝛽(𝑦)𝑎𝛼(𝑥) + 𝛽(𝑦)𝛽(𝑥)𝑏 𝑎𝛼(𝑥𝑦) + 𝛽(𝑥𝑦)𝑏 = 𝑎𝛼(𝑦)𝛼(𝑥) + 𝛽(𝑦)𝑏𝛼(𝑥) + 𝛽(𝑦)𝑎𝛼(𝑥) + 𝛽(𝑦)𝛽(𝑥)𝑏 ∴ 𝑎(𝛼(𝑥𝑦) − 𝛼(𝑦)𝛼(𝑥)) + 𝛽(𝑥𝑦) − 𝛽(𝑦)𝛽(𝑥))𝑏 = 𝛽(𝑦)(𝑏 + 𝑎)𝛼(𝑥) 

Theorem : 3.3 

 Let S be a 2-torsinfree semiprime semiring, 𝑎, 𝑏 ∈ 𝑆, 𝛼 be epimorphism of S, 𝛽  be 

automorphism of S and 𝐷: 𝑆 →, ∋ 𝐷(𝑥) =  𝑎𝛼(𝑥) + 𝛽(𝑥)𝑏. If D is a non-zero (𝛼, 𝛽) − reverse 

derivation of S then D is ordinary inner (𝛼, 𝛽) − derivation of S which is determined by a. 

Proof 

For any 𝑥, 𝑦 ∈ 𝑆, 𝐷(𝑥𝑦) =  𝑎𝛼(𝑥𝑦) + 𝛽(𝑥𝑦)𝑏 

 𝐷(𝑦𝑥) =  𝑎𝛼(𝑦𝑥) + 𝛽(𝑦𝑥)𝑏 

Using Lemma 3.2, ∴ 𝐷[𝑥, 𝑦] = 𝑎(𝛼(𝑥𝑦) − 𝛼(𝑦)𝛼(𝑥)) + 𝛽(𝑥𝑦) − 𝛽(𝑦)𝛽(𝑥))𝑏 = 𝛽(𝑦)(𝑏 + 𝑎)𝛼(𝑥) 

Similarly, 𝐷[𝑦, 𝑥] =  𝛽(𝑥)(𝑏 + 𝑎)𝛼(𝑦), ∀ 𝑥, 𝑦 ∈ 𝑆  
D( [x,y] ) + D ( [y,x] ) = 0 𝛽(𝑥)(𝑏 + 𝑎)𝛼(𝑦) +  𝛽(𝑦)(𝑏 + 𝑎)𝛼(𝑥) =  0     ----------------(7) 

Replacing y by yz , 𝛽(𝑥)(𝑏 + 𝑎)𝛼(𝑦)𝛼(𝑧) + 𝛽(𝑦)𝛽(𝑧)(𝑏 + 𝑎)𝛼(𝑥) = 0 𝛽(𝑥)(𝑏 + 𝑎)𝛼(𝑥)𝛼(𝑧) + 𝛽(𝑥)𝛽(𝑧)(𝑏 + 𝑎)𝛼(𝑥) = 0  𝛽(𝑥)[(𝑏 + 𝑎)𝛼(𝑧) + 𝛽(𝑧)(𝑏 + 𝑎)]𝛼(𝑥) = 0  

Since 𝛼, 𝛽 are epimorphism and S is Semiprime, we get, (𝑏 + 𝑎)𝛼(𝑧) + 𝛽(𝑧)(𝑏 + 𝑎) = 0, ∀ 𝑧 ∈ 𝑆  𝛽(𝑦)(𝑏 + 𝑎) + (𝑏 + 𝑎)𝛼(𝑦) = 0      ----------------(8) 

(7) implies, −𝛽(𝑥)𝛽(𝑦)(𝑏 + 𝑎) − 𝛽(𝑦)𝛽(𝑥)(𝑏 + 𝑎) = 0 𝛽(𝑥𝑦 + 𝑦𝑥)(𝑏 + 𝑎) = 0, ∀𝑥, 𝑦 ∈ 𝑆                                                                ---------------(9) 

Replace y by yz and use the equation x (yz) + (yz) x = y (xz + zx) + [x,y] z 𝛽(𝑦(𝑥𝑧 + 𝑧𝑥) + [𝑥, 𝑦]𝑧)(𝑏 + 𝑎) = 0, ∀𝑥, 𝑦, 𝑧 ∈ 𝑆 

Putting 𝑧 = 𝛽−1(𝑏 + 𝑎)𝑧[𝑥, 𝑦], 𝛽([𝑥, 𝑦])(𝑏 + 𝑎)𝛽(𝑧)𝛽([𝑥, 𝑦]) = 0 

Since S is semiprime,𝛽([𝑥, 𝑦])(𝑏 + 𝑎) = 0     ---------------(10) 

From (9) and (10), 2𝛽(𝑥𝑦)(𝑏 + 𝑎) = 0, ∀𝑥, 𝑦 ∈ 𝑆 

Since S is 2-torsion free semiprime semiring, (b+a) = 0 𝐷(𝑥) = 𝑎𝛼(𝑥) − 𝛽(𝑥)𝑎 = [𝑎, 𝑥]𝛼,𝛽 

Hence D is ordinary inner (𝛼, 𝛽) − derivation of S determined by a. 
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Theorem : 3.4 

Let S be a 2-torsionfree semiprime semiring, 𝑎, 𝑏 ∈ 𝑆, 𝛼 be anti-epimorphisms of S, 𝛽 be anti 

automorphisms of S and 𝐷(𝑥) =  𝑎𝛼(𝑥) + 𝛽(𝑥)𝑏. If D is a non-zero (𝛼, 𝛽)-reverse derivation 

of S then D is ordinary inner (𝛼, 𝛽)- derivation of S which is determined by a. 

Proof: 

By lemma 3.2, and (𝛼, 𝛽) are anti-homomorphisms, 𝛽(𝑦)(𝑏 + 𝑎)𝛼(𝑥) = 0, ∀𝑥, 𝑦 ∈ 𝑆 

Since S is Semiprime semiring, b + a = 0, using hypothesis, 𝐷(𝑥) = [𝑎, 𝑥]𝛼,𝛽 

Hence D is ordinary inner (𝛼, 𝛽) − derivation of S determined by a. 

Theorem : 3.5 

Let S be a semiprime semiring, 𝛼, 𝛽 be a automorphisms and D and G be  (𝛼, 𝛽) − reverse 

derivations of S such that, 𝐷(𝑥)𝛼(𝑦) + 𝛽(𝑦)𝐺(𝑥) = 0, ∀𝑥, 𝑦 ∈ 𝑆. Then 𝐷(𝑦)𝛼([𝑧, 𝑥]) =𝛽([𝑧, 𝑥])𝐺(𝑦) =  0, ∀𝑥, 𝑦, 𝑧 ∈ 𝑆, in particular, D and G map Z(S). 

Proof 

Let 𝐷(𝑥)𝛼(𝑦) + 𝛽(𝑦)𝐺(𝑥) = 0, ∀𝑥, 𝑦 ∈ 𝑆     ----------------(11) 

Put x = x y, 𝐷(𝑥𝑦)𝛼(𝑦) + 𝛽(𝑦)𝐺(𝑥𝑦) = 0, ∀𝑥, 𝑦 ∈ 𝑆 

Using (𝛼, 𝛽) − reverse derivations and (11), we get 

 𝐷(𝑥)𝛼(𝑥𝑦) + 𝛽(𝑦)𝐺(𝑦)𝛼(𝑥) = 0, ∀𝑥, 𝑦 ∈ 𝑆 𝐷(𝑥)𝛼(𝑥𝑦) + 𝛽(𝑦)𝐺(𝑦)𝛼(𝑥) = 𝐷(𝑦)𝛼(𝑥𝑦) − 𝐷(𝑦)𝛼(𝑦)𝛼(𝑥) = 0                              𝐷(𝑦)𝛼([𝑥, 𝑦]) =  0, ∀𝑥, 𝑦 ∈ 𝑆                                               ----------------(12)

     

Put 𝑥 =  𝛼−1(𝑧)𝑥,  𝐷(𝑦)𝑧𝛼([𝑥, 𝑦]) =  0, ∀𝑥, 𝑦, 𝑧 ∈ 𝑆     ----------------(13) 

Linearizing (12), 0 = 𝐷(𝑦 + 𝑧)𝛼([𝑥, 𝑦 + 𝑧])                   = 𝐷(𝑦)𝛼([𝑥, 𝑦]) + 𝐷(𝑦)𝛼([𝑥, 𝑧]) + 𝐷(𝑧)𝛼([𝑥, 𝑦]) + 𝐷(𝑧)𝛼([𝑥, 𝑧]) 

                                = 𝐷(𝑦)𝛼([𝑥, 𝑧]) + 𝐷(𝑧)𝛼([𝑥, 𝑦]) 

Hence, 𝐷(𝑧)𝛼([𝑥, 𝑦]) = 𝐷(𝑦)𝛼([𝑧, 𝑥]), ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑆 

Now to prove 𝐷(𝑦)𝛼([𝑧, 𝑥]) = 0 

Consider 𝐷(𝑦)𝛼([𝑧, 𝑥])𝑠𝐷(𝑦)𝛼([𝑧, 𝑥]), ∀𝑠 ∈ 𝑆 𝐷(𝑦)𝛼([𝑧, 𝑥])𝑠𝐷(𝑦)𝛼([𝑧, 𝑥]) = 𝐷(𝑦)𝛼([𝑧, 𝑥])𝑠𝐷(𝑧)𝛼([𝑥, 𝑦]) 

Put 𝑡 = 𝛼([𝑧, 𝑥])𝑠𝐷(𝑧), we get, 𝐷(𝑦)𝛼([𝑧, 𝑥])𝑠𝐷(𝑦)𝛼([𝑧, 𝑥]) = 𝐷(𝑦)𝑡𝛼([𝑥, 𝑦]) 

 = 0      [ since by (13) 

Hence 𝐷(𝑦)𝛼([𝑥, 𝑦]) =  0, ∀ 𝑥, 𝑦 ∈ 𝑆                                                              ----------------(A) 

Next to show that 𝐷(𝑆)𝑍(𝑆) 

Replacing z by 𝑧𝛼−1(𝐷(𝑦) in (A), 𝐷(𝑦)𝛼(𝑧)[𝐷(𝑦), 𝛼(𝑥)] = 0, ∀𝑥, 𝑦, 𝑧 ∈ 𝑆   ----------------(14) 

Put z = xz, 𝐷(𝑦)𝛼(𝑥)𝛼(𝑧)[𝐷(𝑦), 𝛼(𝑥)] = 0, ∀𝑥, 𝑦, 𝑧 ∈ 𝑆 

Multiply 𝛼(𝑥) in (14), 𝛼(𝑥)𝐷(𝑦)𝛼(𝑧)[𝐷(𝑦), 𝛼(𝑥)] = 0                                   ----------------(15) 

Subtract (14) and (15), [𝐷(𝑦), 𝛼(𝑥)]𝛼(𝑧)[𝐷(𝑦), 𝛼(𝑥)] =  0 

Since S is Semiprime, [𝐷(𝑦), 𝛼(𝑥)] = 0, ∀𝑥, 𝑦 ∈ 𝑆 

Hence 𝐷(𝑆)𝑍(𝑆) 

Similarly to prove, 𝛽([𝑧, 𝑥])𝐺(𝑦) =  0, ∀𝑥, 𝑦, 𝑧 ∈ 𝑆 and 𝐺(𝑆)𝑍(𝑆) 
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ABSTRACT:  In this paper, we introduce generalization of generalized star closed sets 

((gg*)-closed sets) and generalized ω-closed sets in topological spaces .  
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1. INTRODUCTION: 

Closed sets are basic objects in a topological space. In 1970, N. Levine [3] initiated the 

study of g-closed sets . By Definition, a subset S of a topological space X  is called 

generalized closed if UclA  whenever UA   and U is open. Generalized closed sets also 

proffer new properties of topological spaces and mainly are separation axioms weaker than 

T1.In [1], Aull and Thron introduce several separation axioms between T 0 and  T

1
.Furthermore, the study of generalized closed sets also provide new characterization of 

some known classes of spaces for example the class of extremely disconnected spaces. 

Other new properties are defined by variations of the property of submaximality. In Section 

2 , we follow a similar line to introduce generalized ω- closed sets by utilizing the ω-closure 

operator. We study g-closed sets and gω-closed sets in the spaces (X, τ) and (X, τω). In particular, 

we show that a subset A of a space (X, τ) is closed in (X, τω) if and only if it is g-closed in 

(X, τω) if and only if it is gω-closed in (X, τω).    

                                     

2.PRELIMINARIES 

Throughout this paper ( X ,τ) denotes the topological space with no separation 

properties assumed.For a subset  A of X , the closure of A and interior of A are denoted by 

cl ( A ) and int ( A ) respectively. A subset A of a topological space X is called α-open [resp. 

semi-open, preopen, semi-preopen] if A  int(cl(int A )) [resp.  A  cl(int A ), A 
int(cl A ), A  cl(int(cl A ))]. Moreover, A is said to be α-closed [resp. semi-closed, 

preclosed, semi-preclosed ] if AX /  is α-open [resp. semi-open, preopen, semi-preopen] 

or, equivalently, if cl(int(cl A ))   A  [resp. int(cl A )  A ,  cl(int A )   A , 

int(cl(int A ))   A ].  

Let (X, τ) be a topological space and let A be a subset of X. The closure of A, the 
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interior of A, and the relative topology on A will be denoted by )(Acl (A), int (A), and 

τA, respectively. The ω-interior (ω-closure) of a subset A of a space (X, τ) is the interior 

(closure) of A in the space (X, τω), and is denoted by 


int  (A) (


cl  (A)). 

Definition 2.1. A space (X, τ) is called 

(a) locally countable [4] if each point x ∈ X has a countable open neighborhood; 

(b) anti-locally countable [2] if each nonempty open set is uncountable; 

(c) T1/2-space [10] if every g-closed set is closed (equivalently if every singleton is open 

or closed, see [30]). 

Definition 2.2. A function f  : ( X , τ) → (Y , σ) is called 

(a) g-continuous [5] if )(1 Vf   is g-closed in ( X , τ) for every closed set V of (Y  , σ); 
(b) g-irresolute [5] if )(1 Vf   is g-closed in ( X , τ) for every g-closed set V of (Y  , σ); 
(c) ω-continuous [11] if )(1 Vf   is ω-open in ( X , τ) for every open set V of (Y  , σ); 
(d) ω-irresolute [12] if )(1 Vf  is ω-open in ( X , τ) for every ω-open set V of (Y  , σ); 
(e) α-continuous [31] if )(1 Vf  is α-set in ( X , τ) for every open set V of (Y  , σ). 

 

Lemma 2.3 .[4] Let A be a subset of a space (X, τ). Then, 

(a) (τω)ω = τω ;   (b) (τA)ω =(τω) A . 

Definition 2.4. 

(1) generalized closed set (g-closed) [3] if UAcl )( whenever UA   and  U is open in X . 

(2) Semi generalized closed [6] if UAscl )(  whenever UA  and U  is  Semi open in X . 

(3) generalized semi closed [8] if UAscl )(  whenever UA  and U  is open in X . 

(4) generalized  -closed (g -closed)[7] if UAcl  )(  whenever  UA  and U  is  -

open in X .          

(5)  generalized closed ( g-closed) [9] if UAcl  )(  whenever UA   and U  is open 

in X . 

(6) generalized semi pre closed (gsp-closed)[13] if UAspcl )(  whenever  UA  and U  is  

open in X . 

(7) generalized pre closed (gp-closed)[14] if UApcl )(  whenever UA   and U  is  open 

in X . 

(8) regular semi-open[15] if there is a regular open set  U  such that )(UclAU  .   

(9) regular open set[16] if ))(int( AclA  . 

(10) regular closed set  if ))(int( AclA  . 

(11) t-set [17] iff  
))(int()int( AclA  . 

(12) regular generalized closed set (rg-closed)[18]if UAcl )(  whenever  UA  and U  is 

regular open   in X . 

(13)generalized pre-regular closed (gpr-closed)[19] if UApcl )(  whenever UA  and U  

is regular open   in X . 

 (14) generalized semi-pre regular closed (gspr-closed)[20]if UAspcl )(  whenever  UA 

and U  is regular open   in X . 
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(15) generalized star pre closed (g*p-closed)[21]if UApcl )(  whenever  UA  and U  is 

g-open open   in X . 

(16) regular generalized  -closed( rg -closed)[22]if UAcl )(  whenever  UA  and U  

is regular  -open  in X . 

(17)generalized  -closed( g -closed)[23]if UAcl )(  whenever  UA  and U  is  - 

open  in X . 

 (18) generalization of generalized closed set (gg-closed)[24]if UAgcl )(  whenever  and U  

is regular semi open  in X . 

(19) A topological space X is said to be locally indiscrete if every open subset is closed. 

(20) R*-closed set [25] if UArcl )(  whenever UA  and U  is regular semi open  in X . 

Definition  2.5. [27] A space X  is said to be submaximal if every dense subset of X is 

open.A Space X  is  -sub maximality (resp. g-submaximal, sg-submaximal) if every 

dense subset is 𝛼-open (resp g-open,sg-open)[26]. Obviously every submaximal space is 

g-submaximal, that if ( )(, XX  ) is g-submaximal, then ( )(, XX  ) is also sg-submaxima. 
Remark 2.6. [28].Every semi-preclosed set is sg-closed and every preclosed set is g -

closed.  

Definition 2.7. Let S be a subset of a space X .A resolution of S is a pair   <
21 , EE > of 

disjoint dense subsets of S. The subset S is said to be resolvable if it possesses a 

resolution, otherwise S is said to be irresolvable. 

Definition 2.8. Let S ne a subset of a space X ,then S is called strongly irresolvable ,if 

every open subspace of S is irresolvable. 

Remark 2.9.If <
21 , EE > is a resolution of S then 

1E  and 
2E  are condense in X .i.e. have 

empty interior. 

Lemma 2.10 [29] Every space X has a unique decomposition GFX   where F is 

closed and resolvable and G is open and hereditarily irresolvable. This decomposition is 

called Hewitt decomposition of X . 

Theorem 2.11. [32] For a space X  with Hewitt decomposition GFX   .Then 

the following are equivalent. 

(1) every semi-preclosed subset of is X is sg-closed set. 

(2) spclAsclAX 1 for each 1XA   

(3). )int(1 clGX   

(4) ZYX  ,where is locally indiscrete and Z is strongly  irresolvable. 

(5) every preclosed subset of X  is g -closed 

(6) X  is g-submaximal with respect to )(X . 

 

3.(gg)*-CLOSED SETS 

Definition 3.1. A subset A of a topological space ),( X is called generalization of 

generalized star closed sets (gg)*-closed if UArcl )( whenever UA  and U is gg-

open. 

Proposition 3.2.Every regular closed set is (gg)*-closed. 

Proof: Let A  be a regular closed set in X such that UA  and U is gg-open.  
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Then UArcl )( .Therefore A  is (gg)*-closed. 

Proposition 3.3. Every (gg)*-closed set is g-closed. 

Proof: Let A be a (gg)*-closed set in X .Let U  be an open set in X  such that UA 

Since every open set is gg-open[24] and since A is (gg)*-closed , UArcl )( .                 

But we have UArclAcl  )()( Hence A is g-closed 

 Proposition 3.4. Every (gg)*closed set is gsp-closed 
Proof: Let A be a (gg)*-closed set in X .Let U be  a an open set in X  such that UA 

Since every open set is gg-open[24] and since A is (gg)*-closed , UArcl )( .                  

But we have UArclAspcl  )()( Hence A is gsp-closed. 

Proposition 3.5. Every (gg)*closed set is gp-closed. 

Proof: Let A be a (gg)*-closed set in X .Let U be  an open set in X  such that UA 

Since every open set is gg-open[24] and since A is (gg)*-closed , UArcl )( .                  

But we have UArclApcl  )()( Hence A is gp-closed. 

Proposition 3.6. Every (gg)*closed set is gs-closed. 

Proof : Let A be a (gg)*-closed set in X .Let U be an open set in X  such that UA 

Since every open set is gg-open[24] and since A is (gg)*-closed UArcl )( .                   

But we have UArclAscl  )()( .Hence A is gs-closed. 

Proposition 3.7. Every (gg)*closed set is g -closed. 

Proof: Let A be a (gg)*-closed set in X .Let U be an open set in X  such that UA   

Since every open set is gg-open[24] and since A is (gg)*-closed UArcl )( .                   

But we have UArclAcl  )()( .Hence A is g -closed. 

Proposition 3.8. Every (gg)*closed set is rg-closed.  

Proof: Let A be a (gg)*-closed set in X .Let U be an open set in X  such that UA   

Since every regular open set is gg-open[24] and since A is (gg)*-closed , UArcl )( .       

But we have UArclAcl  )()( .Hence A is rg-closed. 

Proposition 3.9. Every (gg)*closed set is gpr-closed. 

Proof: Let A be a (gg)*-closed set in X .Let U be an open set in X  such that UA   

Since every regular open set is gg-open[24] and  A is (gg)*-closed , UArcl )( .             

But we have UArclApcl  )()( .                                                                                           

Hence A is gpr-closed. 

Proposition 3.10. Every (gg)*closed set is gspr-closed. 

Proof: Let A be a (gg)*-closed set in X .Let U be  a regular open set in X  such that 

UA  .                                                                                                                              

Since every regular open set is gg-open[24] and since A is (gg)*-closed , UArcl )( .      

But we have UArclAspcl  )()(                                                                                         
Hence A is gspr-closed. 

Proposition 3.11. Every (gg)*closed set is g*p-closed. 

Proof: Let A be a (gg)*-closed set in X .Let U be  a regular open set in X  such that 

UA  .                                                                                                                               

Since every g- open set is gg-open[24] and since A is (gg)*-closed , UArcl )(  But we 
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have UArclApcl  )()(                                                                                                  
Hence A is g*p-closed. 
 Proposition 3.12. Every (gg)*closed set is g**-closed.  

Proof: Let A be a (gg)*-closed set in X .Let U be  a g*- open set in X  such that UA 

Since every g*- open set is gg-open[24] and since A is (gg)*-closed , UArcl )( .                        

But we have UArclAcl  )()( .                                                                                                     

Hence A is g**-closed. 

 

4. GENERALIZED ω-CLOSED SETS : 

Definition 4.1. A subset A of a space ( X , τ) is called generalized ω-closed (briefly, gω- 

closed) if UAcl )(


 whenever  U  and UA  

We denote the family of all generalized ω-closed (generalized closed) subsets of a space ( X , 

τ) by )),()(,(  XGCXCG . 

It is clear that if (X, τ) is a countable space, then ),(  XCG P( )X , where P( X ) is 

the power set of X . 

Proposition 4.2. Every g-closed set is gω-closed. 

The proof follows immediately from the definitions and the fact that τω is finer than τ for 

any space ( X , τ). However, the converse is not true in general as the following example 

shows. 

Example 4.3. Let },,{ cbaX  with the topology }},{},{,,{ baaX   and let }{aA  . 

Then A ),(  XCG . But ),( XGCA since  AA and XAcl )( A . 

Lemma 4.4. Let ( AA , ) be an anti-locally countable subspace of a space ( X , τ).                               
Then )()( AclAcl   . 

Proof. We need to prove that )()( AclAcl
  . Suppose that there exists 

)()( AclAclx
  . Then )(Aclx  , and so there exists xW such that xWx  and 

 AWx   A is a nonempty countable open set in (A, τA)), which is a contradiction and 

the result follows.  

Corollary 4.5. Let ),( AA   be an anti-locally countable subspace of a space (X, τ). Then 

),( XGCA if and only if ),(  XCGA . 

Theorem 4.6. Let ( X , τ) be any space and XA   . Then the following are equivalent. 

       1) A is ω-closed in ( X , τ) (equivalently A is closed in(, τω)). 

      2) ),( XGCA  

3) ),(  XCGA  

   1)Proof. (a)⇒(b). It follows from the fact that every closed set is g-closed. 

 (b)⇒(c). It is obvious by using Proposition 4.2. 
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(c)⇒(a). We show that AAcl )(


. Suppose that Ax 0  Then }{ 0xXU   is an  - 

open set containing A. Since ),(  XCGA  , UAclAcl  )()()(    , and thus 

)(0 Aclx


 . Therefore, AAcl )(


, that is, A  is closed in ( X , τ) 
In the same way, it can be shown that a subset A of a space  

( X , τ) is closed if and only if UAcl )( whenever U and UA  . 

Proposition 4.7. If ),( XGCA , then ),(  XCGA but not conversely. 

Example 4.8. Let X R  be the set of all real numbers with the topology }}1{,,{ X  and put 

A  R - Q . Then A  is an  -open subset of (X, τ) such that )(Acl


 R-{1} A (i.e.,

),( XGCA . However, ),(  XCGA since the only open set in ),( X containing A  

is X . 

In Example 4.8, for a space ( X , τ)  the collections ),( XGC  and ),( XGC are independent 

from each other. 

Example 4.9. Conside X R with the usual topology u . Put QA  )1,0(  Then 

AAcl
u

)()(  ( A is countable) ,and so A GC(R,(τu)ω).                                                        On  

the  other  hand,  GCA (R, τu)since )1,0(U is open in (R, τu) such that UA and 

UAcl
u

 ]1,0[)( . 

In Example 4.9, (R, τu) is anti-locally countable and QA  )1,0(  CG  (R, τu) GC

(R, τu). Thus  the condition  that ),( AA    is  anti-locally  countable in Corollary 4.5 

cannot be replaced by the condition that (X, τ) is anti-locally countable. 

 Theorem 4.10. Let (X, τ) be an anti-locally countable space. Then (X, τ)    is a T1-space 

if and only if every g -closed set is ω-closed. 

Proof.  We need to show the sufficiency part only. Let Xx and suppose that }{x  is not 

closed. Then }{xXA  is not open, and thus A is gω-closed (the only open set containing 

A  is X ). Therefore, by assumption, A  is ω-closed, and thus }{x   is ω-open. So there exists 

U   such that Ux and }{xU    is countable. It follows that U   is a nonempty countable 

open subset of (X, τ), a contradiction. 

Proposition 4.11.  If A }:{ IA    is a locally finite collection of gω-closed sets of a space 

(X, τ), then  AA I  is gω-closed (in particular, a finite union of gω-closed sets is gω-

closed). 

Proof. Let U be an open subset of (X, τ) such that A ⊆ U. Since Aα ∈ GωC(X, τ) and          

Aα ⊆ U for each α ∈ I,
 
cl  (Aα) ⊆ U. As τω is a topology on X finer than τ, A is locally 

finite in (X, τω). Therefore, )(Acl


 = 


cl )(  AI )(  
AclI  ⊆ U. Thus, A is gω- 

closed in (X, τ).  

Proposition 4.12. If A ∈ GωC(X, τ) and B is closed in (X, τ), then   A   B ∈ GωC(X, 
τ).  
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√ 

Proof: Let U be an open set in (X, τ) such that A B ⊆ U. Put W = X   B. Then A ⊆ 

U ∪ W ∈ τ. Since A ∈ GωC(X, τ),  


cl  (A) ⊆ U ∪ W. Now, 


cl  (A   B) ⊆ 


cl  (A) 


cl  (B)⊆ 


cl  (A)   cl  (B) = 


cl  (A)   B ⊆ (U ∪ W)   B ⊆ U. 

  Lemma 4.13. (a) If A is an ω-open subset of a space (X, τ), then A   C is   - open for every        

countable subset C of X. 

(b) The open image of an  ω-open set is ω-open. 

Proof. Part (a) is clear. To prove part (b), let f : (X, τ) → (Y , σ) be an open function and 

let W be an ω-open subset of (X, τ). Let y ∈ f (W). There exists x ∈ W such that y = f (x). 

Choose U ∈ τ such that x ∈ U and U   W = C is countable. Since f is open, f (U) is open 

in (Y , σ) such that y = f (x) ∈ f (U) and f (U)   f (W) ⊆ f (U W) = f (C) is countable. 

Therefore, )(Wf is  -open in (Y , σ). 

Theorem 4.14. Let (X, τ) and (Y , σ) be two topological spaces. Then (τ × σ)   ⊆ τ   × σ

 . Proof: Let W ∈ (τ × σ)   and (x, y) ∈ W. There exist U ∈ τ and V ∈ σ such that            

(x, y) ∈U× V  and U × V   W = C is countable. Put W1 = (U   p X  (W))   (p X  (C)  

 }{x ) and W2 =(V    p Y  (W))    (p Y  (C)   }{y ), where  p X   : ( YX   , τ × σ) → ( X , 

τ) and  p Y   : ( YX   , τ × σ) → (Y , σ) are the natural projections. Then W1 ∈ τω, W2 ∈σω 

(Lemma 4.13) and (x,y) ∈W1×W2⊆W.Thus W∈τω×σω.  

Definition 4.15. A subset A of a space (X, τ) is called generalized ω-open (briefly, gω- 

open) if its complement X   A is gω-closed in (X, τ). 
It is clear that a subset A of a space (X, τ) is gω-open if and only if F int

  (A), 

whenever F ⊆ A and F is closed in ( X , τ). 
Theorem 4.16. If A × B is a gω-open subset of ( YX   , τ × σ), then A is gω-open in ( X , τ) 
and B is gω-open in (Y  , σ). 
Proof. Let FA be a closed subset of (X, τ) and let FB be a closed subset of (Y , σ) such that    
FA ⊆ A and FB ⊆ B. Then FA × FB is closed in ( YX   , τ × σ) such that FA × FB ⊆ A × 

B. By assumption, A × B is gω-open in ( YX   , τ × σ), and so FA × FB ⊆ int
 )(   (A × 

B) ⊆ int


(A) × int

(B) by using Theorem 4.14. Therefore, FA ⊆ int

  (A) and FB ⊆ 

int
  (A), and the result follows. 

The converse of the above theorem need not be true in general. 

Example 4.17.  Let X = Y = R with the usual topology τu. Let A = R   Q and B = (0, 3). 

Then A and B are ω-open subsets of (R, τu),  while A × B is not gω-open in (R × R, τu × 

τu) , since int(τu ×τu )ω A × B =   and { 2  }× [1, 2] is a closed set in (r × r, τu × τu)  

contained in A × B. 

Theorem 4.18. Let (Y  , Y  ) be a subspace of a space ( X , τ) and A ⊆ Y. Then the following 

hold. 

(a) If A ∈  GωC( X , ), then A ∈ GωC(Y , Y  ). 

(b) If A ∈ GωC(Y , Y  ) and Y  is ω-closed in ( YX  , τ), then A ∈ GωC(X, τ). 
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Proof. (a) Let V be an open set of (Y , Y  ) such that A ⊆ V .  Then there exists an open set   

U ⊆ τ such that V = Y   U. Since A  GωC(X, τ) and A  U, 


cl  (A) ⊆ U. Now, 
 )( Y

cl  (A) 

= )()( Acl Y
 =


cl  (A)  Y  ⊆ Y   U = V . Therefore, A ∈ GωC(Y  , Y  ). 

(b) Let A ⊆ U, where U ∈ τ. Then A ⊆ Y  U ∈ τY . Since A ∈ GωC(Y , τY ),        
 )( Y

cl

(A)= 
Y

cl )(   (A) = )( 
cl  (A)   Y ⊆Y U. Finally, 


cl  (A) =  

cl  (A     Y ) ⊆ 
cl  

(A)    
cl  (Y ) = (Y is ω-closed) 


cl  (A)   Y ⊆ Y   U ⊆ U. Thus         A ∈ 

GωC(X, τ).  
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1. INTRODUCTION 

Ahn and Kim [1] proposed the notion of QS-algebras which also a generalization of BCK/BCI-

algebras. In [2], Y.B. Jun, E.H. Kim introduced a new class of algebras, called BH-algebras, 

which is also generalization of BCH/BCI/BCI-algebras. In [4], the authors, studied some 

relations between Left-(Right-) maps and positive implicativity in BH-algebras. We introduced 

some special type of mapping on QS-algebras called the left (or) right maps in QS-algebras X. 

 

2. PRELIMINARIES 

In this section, we recall some basic definition and results that are required for our work. 

Definition 2.1: [1] A QS-algebras (X,*,0) is a non-empty X with the constant 0 and single 

binary operation * satisfying the following actions: 

1. x * x = 0 

2. x * 0= x  

3. (x * y) *z = (x * z) * y 

4. (x * y) * (x * z) = z * y      for all x, y, z in X 

Example 2.2: Let (X={0,1,2,3}, * , 0) be a set with the following Cayley table: 

* 0 1 2 3 

0 0 1 2 3 

1 1 0 1 1 

2 2 1 0 0 

3 3 1 3 0 

Then (X,*,0) is QS-algebras. 

Remark 2.3:[2] Let  (X,*,0) be a QS-algebras. Define x ∧ y = y *(y * x), for all x, y in X. 

A QS-algebras X is said to be commutative if  x ∧ y = y ∧ x , for all x, y in X. 

Definition 2.4:[3] A BH-algebras  (X,*,0) is a non empty set X with a constant 0 and single 

binary operation * satisfying the following axioms: 

1. x * x = 0 

2. (x * y) *z = (x * z) * y 

3. x * y = 0 and y * x = 0 ⇒ x = y , for all x, y, z in X. 

Example 2.5: Let (X={0,1,2,3}, * , 0) be a set with the following Cayley table: 
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* 0 1 2 3 

0 0 0 0 0 

1 1 0 3 1 

2 2 2 0 3 

3 3 1 2 0 

Then (X,*,0) is BH-algebras. 

Definition 2.6: [4] Let (X,*,0) be BH-algebras. 

 For fixed  a in X, we define a map Ra : X →  X such that Ra (x) = x * a, ∀ x  ∈  X. Then 

Ra  is called a right map on X. The set of all right map on X is denoted by  R . 

 For fixed  a in X, we define a map La : X →  X such that La (x) = a * x, ∀ x  ∈  X. Then 

La  is called a right map on X. The set of all left map on X is denoted by  L. 

Example 2.7: Let (X={0,1,2}, * , 0) be a  BH-algebras with following Cayley table: 

 

* 0 1 2 

0 0 0 0 

1 1 0 1 

2 2 2 0 

 

Define a function f : X →  X  by  f(x) = 0 if x = 0,1 and f(x) = 2 if x=2 

Fix  a= 2, the map R2 (x)= x * 2, for all x in  X. Hence the function f on X becomes a right map 

R2  on X 

Example 2.7: Let (X={0,1,2}, * , 0) be a  BH-algebras with following Cayley table: 

 

* 0 1 2 

0 0 0 0 

1 1 0 1 

2 2 2 0 

Define a function f : X  → X  by  f(x) = 1 if x = 0,2 and f(x) = 0 if x=1 

Fix  a= 1, the map L2 (x)= 1 * x, ∀ x  ∈  X. Hence the function f on X becomes a left map L2  

on X. 

Definition 2.8: [1] A subset A of a QS-algebras X is called and ideal of X if it satisfies: 

1. 0 ∈ A  

2. for all y ∈ A and x * y ∈ A  imply  x ∈  A , for all x ∈   X. 

Obviously, {0} and X are ideal of X. 

Definition 2.9: [1] If (X,*,0) be a QS-algebras then we define a partial ordering ≤ by x ≤ y  
if x * y=0. 

Definition 2.10: [4] Let X  be a BH-algebras and let Ra  and La  be a right and left maps on X. 

We have the following subsets of X corresponding to La  and Ra  respectively.  

Ker (La ) = {x  ∈  X / La (x) = 0} 

Ker(Ra ) =  {x  ∈  X / Ra ( x) = 0} 
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3. LEFT AND RIGHT MAPS ON QS-ALGEBRAS 

Definition 3.1: Let (X,*,0) be QS-algebras. 

 For fixed  a in X, we define a map La : X →  X such that La (x) = a * x, ∀ x  ∈  X. Then 

La  is called a right map on X. The set of all left map on X is denoted by  L. 

 For fixed  a in X, we define a map Ra : X →  X such that Ra (x) = x * a, ∀ x  ∈  X. Then 

Ra  is called a right map on X. The set of all right map on X is denoted by  R . 

Example 3.2: Let (X={0,1,2}, * , 0) be a  QS-algebras with following Cayley table: 

* 0 1 2 

0 0 2 1 

1 1 0 2 

2 2 0 2 

Define a function f : X →  X  by  f(x) = 2 if x = 0 and f(x) = 0  , otherwise  

Fix  a= 1, the map R1 (x)= x * 1, ∀ x  ∈  X. Hence the function f on X becomes a right map R1  

on X 

Example 3.3: Let (X={0,a,b,c}, * , 0) be a set with the following Cayley table: 

* 0 1 2 3 

0 0 1 2 3 

1 1 0 1 1 

2 2 1 0 0 

3 3 1 3 0 

Define a function f : X →  X  by  f(x) = 0 if x=2,3  , f(x)= 2 if x=0 and f(x)= 1 if x=1.  

Fix a=2, the map L2 (x)= 2 * x , ∀ x  ∈  X.  Hence the function f on X becomes a right map L2  

on X 

Proposition 3.4: Let X be a QS-algebras. Then for any x, y and z in X, the following results 

holds: 

1. x * (x * y) = y 

2. 0 * (x * y) = y * x =(0 * x) *(0 * y) 

3. (x * (x * y)) * y = 0 

4. If x * y = 0 and y * x = 0 then x = y, for all x, y in X 

5. (x * z) * (y * z) = x * y 

Proof:  

1.  (x * y) = (x * 0) * (x * y)  by (1) of definition 2.1 

            = y * 0         by (4) of definition 2.1 

            = y       by (1) of definition 2.1 

2. 0 * (x * y) = (x * x) * (x * y)     by (1) of definition 2.1 

                 = y * x       by (4) of definition 2.1 

                 = (0 * x) *(0 * y)     by (4) of definition 2.1 

3. (x * (x * y)) * y = ((x * 0) * (x * y)) * y       by (2) of definition 2.1 

                          = (y * 0) * y       by (4) of definition 2.1 

                          = y * y          by (2) of definition 2.1 

                          = 0         by (1) of definition 2.1 
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4. x = x * 0 = x * (x * y) = ( x * 0) * (x * y) = y * 0 = y 

y = y * 0 = y * (y * x) = (y * 0) * (y * x) = x * 0 = x 

5. Suppose (x * z) * (y * z) ≠ x * y. Then 

          ((x * z) * (y * z)) * (x * y) ≠ ( x * y) * (x * y) 
                                                    ≠ y * y     by (4) of definition 2.1 

                                                    ≠ 0         by (1) of definition 2.1 

This contradiction the condition ((x * z) * (y * z)) * (x * y) =0, and prove that  

(x * z) * (y * z) = x * y 

Proposition 3.5 Let X be a QS-algebras. 

For every natural number n,  La 
n = La  if  n odd and La 

n = La 
2 if   n  is even. 

Proof: Let x ∈   X. 

Let  x ∈  X. 

Case (i):  n is odd. 

Assume now that, the result is true for n=2m+1. 

That is, La 
2m+1 (x)= La (x) …....... (1) 

Now, La 
2m+3 (x)= La 

2 (La 
2m+1 (x))= La 

2 (La (x))   by (1) 

                                                     = La 
3 (x) 

                                                      = La (x) 

Thus the result is true for any n which an odd number. 

Case (ii): n is even. 

Again assume that, the result is true for n=2m. 

That is, La 
2m (x)= La 

2
 (x) …....... (2) 

Now, La 
2m+2 (x)= La 

2 (La 
2m (x))= La 

2 (La 
2

 (x))   by (2) 

                                                  = La 
4

 (x) 

                                                  = La 
2

 (x) 

Thus the result is true for any n which an even number. 

Hence the result is true for every natural number n, La 
n = La  if  n odd and La 

n = La 
2 if   

n  is even. 

Proposition 3.6: Let X be a QS-algebras. Then for all x, y in X, we have  

1. La 
2 (x) * La (y) = La 

2 (y) * La (x) 

2. La 
2 (x) * y = La (y) * La (x) = La 

2 (x) * La 
2 (y) 

Proof:  Let x, y ∈  X. 

1. La 
2 (x) * La (y) = (a * (a * x)) * (a * y)     by definition 3.1 

                        =  (a * (a * y)) * (a * x)   by (3) of definition 2.1 

                        = La 
2 (y) * La (x)     by definition 3.1 

2. La 
2 (x) * y =  (a * (a * x)) * y 

                 = (a * y) * (a * x)     by (3) of definition 2.1 

                 = La (y) * La (x)    .............(1’) by definition 3.1 

La 
2 (x) * La 

2 (y) =  (a * (a * x)) * (a * (a * y)) 

                          = (a * (a * (a * y))) *  (a * x)    by (3) of definition 2.1 

                          =  (a * y) *  (a * x)      by proposition 3.4 

                          = La (y) * La (x)     by definition 3.1 ………..(2’) 
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From (1’) and (2’), we get La 
2 (x) * y = La (y) * La (x) = La 

2 (x) * La 
2 (y) 

Proposition 3.7: Let X be a QS-algebras. Then the following results hold,  

1. La 
2 is isotonic, i.e, x ≤  y implies La 

2 (x) ≤ La 
2 (y) 

2. La 
2 (x) = 0 if and only if  Rx (a) = a 

Proof: Let x ∈  X. 

Let x ≤  y. Then x * y=0 ……… (1’)     by definition 2.8 

1. La 
2 (x) * La 

2 (y) = La 
2 (x) * y       by proposition 3.6 

                          = (a * (a * x)) * y 

                          = x * y       by (1) of proposition 3.4 

                          = 0     by (1’) 
By definition of partial order, we get La 

2 (x) ≤ La 
2 (y) 

2. Let La 
2 (x) = 0 iff La (La (x))  = 0 

                        iff  a * (a * x) = 0      by definition 3.1 

                        iff  a * (a * x) = a * a   by (1) of definition 2.1 

                        iff a * Rx (a) = a * a    by definition 3.1 

                        iff Rx (a) = a   by left cancellation law 

Proposition 3.8: Let X be a QS-algebras and let La  be a left map on X. If x ∈  Ker (La ) and y ∈  X, then        x ∧  y ∈  Ker (La ) . 

Proof: Let y ∈  X 

Let x ∈  Ker (La ). Then La (x) = 0 ……… (1)  by definition 2.10 

La (x ∧  y) = La (y * (y * x)) by remark 2.3 

                = La (x)      by proposition 3.4 

                = 0     by (1) 

Therefore x ∧  y ∈  Ker (La ) . 

Proposition 3.9: Let X be a QS-algebras. Then for any a in X, Ker (La 
2) is ideal of  X. 

Proof: Since La 
2(0)=0, we get 0 ∈ Ker (La 

2) 

If y, x * y ∈  Ker (La 
2) then La 

2(y)=0 and La 
2(x * y)=0  ………. (1) 

                 La 
2(x)= La 

2(x) * La 
2(x * y)           by (1) 

                           = La 
2(x) * (x * y)          by (2) of proposition 3.6 

                           = (La 
2(x) * La 

2(y)) *  (x * y)    by (1) 

                          = (La 
2(x) * y) * (x * y)      by (2) of proposition 3.6 

                          = La 
2(x) * x        by (5) of proposition 3.4 

                          = La (x) * La (x)      by (2) of proposition 3.6 

                          = 0         by (1) definition 2.1 

Therefore, x * y ∈  Ker (La 
2). Hence Ker (La 

2) is ideal of X. 
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1. INTRODUCTION: 

In 1965, Fuzzy set (FS) was developed by Lofti.A Zadeh [5] and he discussed membership 

function only. By this way, in 1986, Atanasov [1] introduced the notion of Intuitionistic Fuzzy 

set (IFS) in which not only the membership value is considered but also consider non-

membership values. After that, many researchers used the fuzzy and Intuitionistic Fuzzy set 

apply in many areas. In another extended of a Fuzzy set, in 2013, Yager [3] [4], introduced a 

new concept of non – standard fuzzy sets called a Pythagorean fuzzy sets (PFS) and related 

ideas of Pythagorean membership function grades. In 2002, J. Neggers and H.S. Kim [2], 

introduced a class of algebras called β- algebras. This paper dealt the idea of Pythagorean fuzzy 

on β- sub algebras and Pythagorean fuzzy on level β- algebra, by connecting the concepts β-

algebras, Pythagorean fuzzy set. Also proved some of their properties and relation between 

Intuitionistic Fuzzy β- algebras and Pythagorean fuzzy β-algebras.  

 

2. PRELIMINARIES: 

In this section we recall some basic definitions that are required in the sequel. 

Definition 2.1:   A β-algebra is a non-empty set X with a constant 0 and two binary 

operations  +  and - satisfying the following axioms: 

1. x − 0 =  x 

2. (0 − x)  +  x =  0 

3. (x − y) − z =  x − (z + y) for all x, y, z ϵ X. 
Definition 2.2: Let X be a set of universal discourse and a fuzzy set µ in X is a function 

 µ : X → [0, 1]. For each element x in X, µ(x) lies between 0 and 1 and µ(x) is called the 
membership value of x in X. 

 Definition 2.3:   A non-empty subset I of a β− algebra (X, +, −, 0 ) is called a β− ideal of X, 
 if 1. 0 ∈ I   

     2. x + y ∈ I ∀ x, y ∈ X 

     3. if x − y and y ∈ I then x ∈ I ∀ x, y ∈ X. 

mailto:ksujatha203@gmail.com
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Definition 2.4:    Let µ be a fuzzy set in a β− algebra X. Then µ is called a fuzzy β− subalgebra 
of X if  

1. µ (x + y) ≥ min {µ(x), µ(y)} ∀ x, y ∈ X.  

2. µ (x − y) ≥ min {µ(x), µ(y)} ∀ x, y ∈ X. 

Definition 2.5:   An intuitionistic fuzzy set in a nonempty set X is defined by 

 A = {< x, µ𝐴(x) (x), ν𝐴(x) > / x ∈ X}, ∀ x ∈ X, where µ𝐴 : X → [0, 1] is a membership function 
of A. ν𝐴 : X → [0, 1] is a non-membership function of A and satisfies 0 ≤  µ𝐴(x) + ν𝐴(x) ≤ 1. 
Definition 2.6:   Let (X, +, −, 0) be a β algebra. An Intuitionistic fuzzy set A = {x, µ𝐴(x), ν𝐴(x) 

| x ∈ X} is called an Intuitionistic fuzzy (IF) β subalgebra of X, if it satisfies the following 
conditions.  

1. µ𝐴 (x + y) ≥ min (µ𝐴 (x), µ𝐴 (y)) and ν𝐴 (x + y) ≤ max (ν𝐴 (x), ν𝐴 (y)),  

2. µ𝐴 (x − y) ≥ min (µ𝐴 (x), µ𝐴 (y)) and ν𝐴 (x − y) ≤ max (ν𝐴 (x), ν𝐴 (y)), ∀ x, y ∈ X,  

     where 0 ≤ µ𝐴 (x) + ν𝐴 (x) ≤ 1. 
Definition 2.7: Pythagorean Fuzzy Set 

 Let X be a non-empty set. A Pythagorean fuzzy set ‘A’ is an object having the form 

A = {<x, µ𝐴(x), ν𝐴(x) > | x ∈ X} ∀ x ∈ X, where the membership function µ𝐴 : X → [0,1] and   

the non-membership function ν𝐴 : X → [0,1] respectively and satisfies 0 ≤  µ𝐴(x)2 +ν𝐴(x)2) ≤ 
1. 

Definition 2.8:   Let X and Y be two β- algebras. A mapping f : X → Y is said to be a β -
homomorphism, if  f(x + y)  =  f(x)  +  f(y) and f(x − y) =  f(x)  −  f(y) for all x, y ϵ X. 
 

3. PYTHAGOREAN FUZZY ON β – ALGEBRAS : 

In this section, introduce the notion of Pythagorean fuzzy β- subalgebra on β- algebra. We 

begin with the definition and example. Also discuss relation between Intuitionistic fuzzy β- 

subalgebra and Pythagorean fuzzy β- subalgebra. 

Definition 3.1: 

Let (X, +, −, 0) be a β algebra. A Pythagorean fuzzy set A = {<x, µ𝐴(x), ν𝐴(x) > | x ∈ X} is 

called a Pythagorean fuzzy (PF) β- subalgebra of X, if it satisfies the following conditions  

(1) µ𝐴 (x + y) ≥ min (µ𝐴 (x), µ𝐴 (y)) and ν𝐴 (x + y) ≤ max (ν𝐴 (x), ν𝐴 (y)),  

      (2) µ𝐴 (x − y) ≥ min (µ𝐴 (x), µ𝐴 (y)) and ν𝐴 (x − y) ≤ max (ν𝐴 (x), ν𝐴 (y)), ∀ x, y ∈ X,  

     Where 0 ≤  µ𝐴(x)2 +ν𝐴(x)2 ≤ 1. 
Example 3.2:   The β-algebra X = ({0, 1, 2}, +, -, 0) with the following Cayley’s table. 
 

+ 0 1 2  - 0 1 2 

0 0 1 2 0 0 2 1 

1 1 2 0 1 1 0 2 

2 2 0 1 2 2 1 0 

 

A Pythagorean fuzzy β – subalgebra is defined by 

  µ𝐴(x) =  { 0.4, 𝑖𝑓 𝑥 = 0 0.3 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     and   ϑ𝐴(x) =  {0.8, 𝑖𝑓 𝑥 = 0,1,2,3     

 Then we can observe that A is a Pythagorean fuzzy β – subalgebra of X. 
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Example 3.3: Consider the β− algebra of example 3. 2. The set A defined by  
 µ𝐴(x) =  { 0.4, 𝑖𝑓 𝑥 = 0 0.3 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     and   ϑ𝐴(x) =  { 0.7, 𝑖𝑓 𝑥 = 00.8,   𝑖𝑓 𝑥 = 1 0.2 , 𝑖𝑓 𝑥 = 2  
is not a Pythagorean fuzzy β− subalgebra of X.  
For, ϑ𝐴 (1 + 1) ≥ max {ϑ𝐴 (1), ϑ𝐴 (1)} ⇒ ϑ𝐴 (2) ≥ max {ϑ𝐴 (1), ϑ𝐴 (1)} ⇒ .2 ≥ max {.8, .8}. 
Theorem 3.4 Let A and B be a Pythagorean fuzzy β− subalgebras of X. Then A ∩ B is also a 
Pythagorean fuzzy β− subalgebra of X.  
In general, the intersection of a family of Pythagorean fuzzy β− subalgebras of X is also a 
Pythagorean fuzzy β− subalgebra of X.  
Proposition 3.5:  Every Pythagorean fuzzy β− subalgebra of X satisfies the following 
condition. µ𝐴(0) ≥ µ𝐴(x) and  ϑ𝐴(0) ≤ ϑ𝐴(x) for all x ∈ X. 

Proof:  

For any x ∈ X. µ𝐴 (0) = µ𝐴 (x − x) ≥ min (µ𝐴 (x), µ𝐴 (x)) = µ𝐴 (x). 

Therefore µ𝐴 (0) ≥ µ𝐴 (x). 

And ϑ𝐴 (0) = ϑ𝐴 (x − x) ≤ max (ϑ𝐴 (x), ϑ𝐴 (x)) = ϑ𝐴 (x).  

Therefore ϑ𝐴 (0) ≤ ϑ𝐴 (x). 

Theorem 3.6 If A is a Pythagorean fuzzy β− subalgebra of X, then µ𝐴 (x) ≤ µ𝐴 (x − 0) and 

 ϑ𝐴 (x) ≥ ϑ𝐴 (x − 0).  
Proof:  

Let A be a Pythagorean fuzzy β− subalgebra of X. 

Then µ𝐴 (x − 0) ≥ min (µ𝐴 (x), µ𝐴 (0))  

                         = min (µ𝐴 (x), µ𝐴 (x − x)) 
                        ≥ min {(µ𝐴 (x), min (µ𝐴 (x), µ𝐴 (x))} 

                        = min (µ𝐴 (x), µ𝐴 (x))  

                        = µ𝐴 (x)  

Similarly, we can prove that, ϑ𝐴 (x − 0) ≤ ϑ𝐴 (x). 

Definition 3.7:  Let f : X → Y be a function. Let A and B be two Pythagorean β− 
subalgebras in X and Y respectively. Then inverse image of B under f is defined by 

 f −1 (B) = { f −1 (µ𝐵 (x)), f −1 (ϑ𝐵 (x))|x ∈ X} such that f −1 (µ𝐵 (x)) = (µ𝐵 (f(x))) and  

 f −1 (ϑ𝐵 (x)) = (ϑ𝐵 (f(x))). 

 

Theorem 3.8: Let X and Y be two Pythagorean β− subalgebras. Let f : X → Y be a 
homomorphism. If A is of Pythagorean β− subalgebra of Y, then f −1 (A) is a Pythagorean β− 
subalgebra of X.  

Proof:  

Let A be a Pythagorean β− subalgebra of Y, x, y ∈ Y.  

f −1 (µ𝐴 (x + y)) = µ𝐴 (f(x + y))  

                           = µ𝐴 (f(x) + f(y)) ≥ min {µ𝐴f(x)), µ𝐴f(y))}  

                           = min ( f −1 (µ𝐴 (x)), f −1 (µ𝐴 (y))  

And f −1 (µ𝐴 (x − y)) ≥ min { f −1 (µ𝐴 (x))), f −1 (µ𝐴 (y))}  
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Similarly, we can prove,  

f −1 (ϑ𝐴 (x + y)) = ϑ𝐴 (f(x + y))  

                           = ϑ𝐴 (f(x) + f(y))  

                          ≤ max {ϑ𝐴 f(x)), ϑ𝐴f(y))}  

                          = max ( f −1 (ϑ𝐴 (x)), f −1 (ϑ𝐴 (y))  

And f −1 (ϑ𝐴 (x − y)) ≤ max { f −1 (ϑ𝐴 (x)), f −1 (ϑ𝐴 (y))}  

Hence f −1 (A) is a Pythagorean β− subalgebra of X.  
Relation between Pythagorean fuzzy β− subalgebra and Intuitionistic fuzzy β- subalgebra 

Remark 3.9:  Every Intuitionistic fuzzy β− subalgebra is a Pythagorean fuzzy β- subalgebra. 

But converse need not be true. 

That means, Every Pythagorean fuzzy β- subalgebra is not an Intuitionistic fuzzy β− 
subalgebra.  

The above example 3.2, Pythagorean fuzzy β- subalgebra is not an Intuitionistic fuzzy β− 
subalgebra. 

For, an Intuitionistic fuzzy β− subalgebra satisfies, 0 ≤  µ𝐴(x) + ν𝐴(x) ≤ 1. 
But x = 1, (µ𝐴(1) + ν𝐴(1)) ⇒ (0.3 +0.8) ⇒ 1.1 ∉ [0,1]. 

Then we can observe that A is a Pythagorean fuzzy β – subalgebra of X but not an Intuitionistic 

fuzzy β− subalgebra.  
Now, we define the Cartesian product of the two PF β− subalgebras A and B of the β− algebras 
X and Y respectively.  

Definition 3.10: Let A = {<x, µ𝐴 (x), ν𝐴 (x) > | x ∈ X} and B = {<y, µ𝐵 (y), ν𝐵 (y) > | x ∈ Y} 

be two Intuitionistic fuzzy β− subalgebras of X and Y respectively. The Cartesian product of 

A and B is A × B = {(µ𝐴 × µ𝐵)(x, y) and (ν𝐴 × ν𝐵)(x, y) | x, y ∈ X × Y} where (µ𝐴 × µ𝐵)(x, y) 

=  

Min (µ𝐴 (x), µ𝐵 (y)) and (ν𝐴 × ν𝐵)(x, y) = max (ν𝐴 (x), ν𝐵 (y)).  

Theorem 3.11: Let A and B be PF β− subalgebras of X and Y respectively. Then A×B is a PF 
β− subalgebra of X ×Y.  
Proof:  

Take x = (x1, x2), y = (y1, y2) ∈ X × Y, µ (A×B) = µ𝐴 × µ𝐵 and ν(A×B) = ν𝐴 × νB.  

µ (A×B) (x + y) = µ (A×B) ((x1, x2) + (y1, y2))  

                         = (µ𝐴 × µ𝐵)(x1 + y1), (x2 + y2))  

                         = min {µ𝐴 (x1 + y1), µ𝐵 (x2 + y2)} 

                         ≥ min {min (µ𝐴 (x1), µ𝐴 (y1)), min (µ𝐵 (x2), µ𝐵 (y2))}  

                         = min {min (µ𝐴 (x1), µ𝐵 (x2)), min (µ𝐴 (y1), µ𝐵 (y2))}  

                         = min {(µ𝐴 × µ𝐵)(x1, x2), ( µ𝐴 × µ𝐵)(y1, y2)} 

                         = min {(µ𝐴 ×µ𝐵)(x), ( µ𝐴 × µ𝐵)(y)}  

Similarly, µ (A×B)(x − y) ≥ min {(µ𝐴 × µ𝐵)(x),( µ𝐴 × µ𝐵)(y)}. 

Analogously, we can prove that,  

ν(A×B) (x + y) ≤ max {(ν𝐴 × νB) (x), ( ν𝐴 × νB)(y)} and  

ν(A×B) (x − y) ≤ max {(ν𝐴 × νB) (x), (ν𝐴 × νB) (y)}.  

Theorem 3.12: Let A × B be a PF β− subalgebra of X × X.  
Then the following hold  

1. either µ𝐴 (x) ≤ µ𝐴 (0) or µ𝐵 (x) ≤ µ𝐵 (0)  



73 

 

2. either ν𝐴 (x) ≥ νB (0) or νB (x) ≥ νB (0)  

Proof: 1) Suppose µ𝐴 (x) > µ𝐴 (0) and µ𝐵 (x) > µ𝐵 (0), for all x, y ∈ X.  

Then (µ𝐴 × µ𝐵) (x + y) ≥ min (µ𝐴 (x), µ𝐴 (y))  

                                     > min (µ𝐴 (0), µ𝐴 (0)) 

                                     = (µ𝐴 × µ𝐵)(0, 0)  

which is contradiction.  

Similarly, (µ𝐴 × µ𝐵)(x − y) > (µ𝐴 × µ𝐵)(0, 0). which is contradiction.  

2) Proceeding as in part (1), we can prove (2). 

 

4. LEVEL OF PF- β SUBALGEBRAS: 

In this section, we introduce the notion of level subsets of PF β− subalgebras of β− algebra.  
Definition 4.1:  

Let A be PF- β subalgebra of X, s, t ∈ [0, 1]. Then A s, t = {x ∈ X |  µ𝐴 (x) ≥ s, ν𝐴 (x) ≤ t} 
where  

0 ≤  µ𝐴(x)2 +ν𝐴(x)2) ≤ 1 is called a level such that associated with the PF- β subalgebra of A. 
Clearly, As,t ⊆ X.  

Theorem 4.2: If A = (µ𝐴, ν𝐴) is a PF β− subalgebra of X, then the set A s,t is a β− subalgebra 
of X, for every s, t ∈ [0, 1].  

Proof: For x, y ∈ (µ𝐴)s, then  µ𝐴 (x) ≥ s and  µ𝐴 (y) ≥ s  ⇒  µ𝐴 (x + y) ≥ min { µ𝐴 (x), µ𝐴 (y)}  

                       ≥ min {s, s} 

                       ≥ s  ⇒ x + y ∈ (µ𝐴)s  

Similarly it can be proved that x − y ∈(µ𝐴)s  

And ν𝐴 (x + y) ≤ max {ν𝐴 (x), ν𝐴 (y)}  

                        ≤ max {t, t}  
                        ≤ t  ⇒ x + y ∈ (ν𝐴) t 

Similarly it can be proved that x − y ∈ (ν𝐴 )t  

Hence As,t is subalgebra of X. 

 Theorem 4.3: Let A = (µ𝐴, ν𝐴) is a PF set in X such that As,t is a β− subalgebra of X for 
every s, t ∈ [0, 1]. Then A is a PF β− subalgebra of X.  
Proof: Let A = (µ𝐴, ν𝐴) is a PF set in X.  

Assume that As,t is a β− subalgebra of X for every s, t ∈ [0, 1].  ∴ x + y ∈ As,t ⇒  µ𝐴 (x + y) ≥ s and ν𝐴 (x + y) ≤ t.  
That is  µ𝐴 (x + y) ≥ s = min { µ𝐴 (x), µ𝐴 (y)} and  µ𝐴 (x + y) ≤ t = max {ν𝐴 (x), ν𝐴 (y)}  

 Similarly, we can prove that  µ𝐴 (x−y) ≥ s = min { µ𝐴 (x), µ𝐴 (y)} and   µ𝐴 (x−y) ≤ t = max { µ𝐴 (x), ν𝐴 (y)}  

Thus A = (µ𝐴, ν𝐴) is an IF β− subalgebra of X.  
Theorem 4.4: Let A = (µ𝐴, ν𝐴) be an IF- β subalgebra of X iff for all s, t ∈ [0, 1] level set As,t 

is either empty or β− subalgebra of X. 
Proof: Straight forward. 
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5. CONCLUSION: 

In this paper several interesting results were discussed by joining the notions of 

Pythagorean fuzzy set and β-subalgebras. One can further study on rough fuzzy, rough 

Pythagorean fuzzy and Tripolar Pythagorean fuzzy sub structures by connecting with on β-

algebras. 
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1. INTRODUCTION 

The notion of derivations on semirings has been introduced [1] by Jonathan Golan. 

Motivated by this, Chandramouleeswaran and Thiruveni [2] studied the notion of derivations 

on semirings. A Classical result of Herstein [3] asserts that any Jordan derivation on a 2-torsion 

free prime ring is a derivation. A brief proof of Herstein’s theorem can be found in [4]. Cusack 
[5] generalized Herstein’s theorem to a 2-torsion free semiprime ring[6]. In 1990, Bresar and 

Vukman [7] have introduced the notion of left derivation in rings, and also they introduced the 

notion of generalized derivations on rings. Ashraf and Ali in [8] introduced the definitions of 

generalized left derivation (generalized Jordan left derivation) if there exists a Jordan left 

derivation on a ring. Motivated by this, Chandramouleeswaran and Nirmala Devi [9] discussed 

the notion of left derivation, generalized left derivation on semirings and also 

Chandramouleeswaran and Nirmala Devi [10] introduced the notion of right derivations on 

semirings. Motivated by this, in our work, we introduce the notion of Generalized Jordan right 

derivation associated with right (Jordan right) derivation on semirings and we prove some 

elegant results.   

 

2. PRELIMINARIES 

In this section, we recall some basic definitions and results that are required for our work. 

Definition 2.1: A semiring is a nonempty set S on which two binary operations of addition + 

and multiplication   have been defined such that the following conditions are satisfied: 

1. (S , +) is a monoid with identity element 0;  

2. (S ,  ) is a monoid with identity element 1S; 

3. Multiplication distributes over addition from either side: 

    a   (b + c) = a b + a  c; (b + c)   a = b  a + c  a  a , b, c   S 

4. 0  s = 0 = s 0 for all sS. 

Definition 2.2: A Semiring (S, +,  ) is said to be additively commutative, if (S, +) is a   

commutative semigroup. 
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 A Semiring (S, +,  ) is said to be multiplicatively commutative, if (S,  ) is a commutative 

semigroup. 

The Semiring S is said to be a commutative semiring, if both additively and multiplicatively 

commutative. 

Definition 2.3: A Semiring (S, +,  ) is additively cancellative, if it is both additively left and 

right cancellative. 

A Semiring (S, +,  ) is a multiplicatively cancellative, if it is both multiplicatively left and right 

cancellative. 

Definition 2.4: Let S be a semiring. A semiring S is said to be 2-torsion free, if 2a = 0,  

with a S   a = 0. 

Definition 2.5: Let S be a semiring. A right S- semimodule is a commutative monoid (X,+)  

with additive identity 0x for which we have a function X S   X, denoted by (x, s) xs 

and called  scalar multiplication, which satisfies the following conditions.  

For all elements s and s' of S and all elements x and x' of X: 

1. x (ss') = (xs)s' 

2. (x +x') s = xs +x's 

3. x (s +s') = xs +xs' 

4. x1s = x. 

Definition 2.6: Let S be a semiring. An additive mapping d: SS is called a derivation on 

S,  

 if d(xy) = d(x)y + x d(y)   x , y   S. 

 Let S be a semiring. An additive mapping d: SS is called a Jordan derivation on S,  

 if d(x2) = d(x)x+ x d(x)   x   S. 

Definition 2.7: Let S be a semiring. An additive mapping F: SS is called a generalized 

derivation, if there exists a derivation d: SS such that F(xy) = F(x)y + x d(y)   x , y    

S. 

Let S be a semiring. An additive mapping F: SS is called a generalized Jordan derivation,  

if there exists a Jordan derivation d: SS such that F(x2) = F(x)x+ x d(x)   x   S. 

 

3. JORDAN RIGHT DERIVATION: 

In this section, we discuss the notion of Jordan right derivation on semirings. 

Definition 3.1: Let S be a semiring and X a S-module. An additive mapping dR: S   X  

is called a Jordan right derivation on S, if  dR(x2) = 2 dR(x)x    x   S. 

 Example 3.2: 

Let S = ba
a

ba
,:

0











   Z+



   be a commutative semiring  

and X = ba
a

ba
,:

0











    Z




  a  S-module. 

Define a map dR: S  X given by dR 















a

ba

0
 = 








00

0 b
 

Then dR is a Jordan right derivation on S. 

Lemma 3.3: Let (S, +,  ) be an additively commutative semiring. Then the sum of two Jordan  
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right derivation on S is again a Jordan right derivation. 

Proof:  

Let S be an additively commutative semiring.  

Let dR1 , dR2  : S  X be two Jordan right derivation. 

Claim: dR1 + dR2   is a Jordan right derivation on S. 

             

               (dR1 + dR2 )(x2)  = (dR1)( x2) + (dR2)( x2)                       

                        = 2 dR1(x) x + 2 dR2(x) x    x   S.                             

                            = 2 (dR1(x) + dR2(x))x   x   S. 

    (dR1 + dR2 )(x2) = 2 (dR1 + dR2)(x)x    x   S. 

 dR1 + dR2 is a Jordan right derivation on S. 

 

4. GENERALIZED JORDAN RIGHT DERIVATION: 

In this section, we discuss the notion of generalized Jordan right derivation associated with 

right  

(Jordan right) derivation on semirings and prove some elegant results. 

 

Definition 4.1: Let S be a semiring and X a S-module. An additive mapping FR : S   X   

is called a generalized right derivation associated with right derivation, if there exists a  

right derivation dR : S  X such that  FR(xy) = FR(x)y + dR(y)x     x,y   S. 

Example 4.2:  

Let S = Z,,:

0

00

000

























cba

cb

a +



   be a semiring 

and X =       Z,,:

0

00

000
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Define a map FR : S  X such that FR
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a     a, b, c   Z+. 

Then there exists a right derivation dR : S   X  such that    

 dR

































0

00

000

cb

a   = 
















00

000

000

b

    a, b, c   Z+. 

Then FR is a generalized right derivation associated with right derivation on S.   

 

Definition 4.3: Let S be a semiring and X a S-module. An additive mapping FR : S   X is  

called a generalized right derivation associated with Jordan right derivation, if there exists  

a Jordan right derivation dR : S   X such that  FR(xy) = FR(x)y + dR(y)x  x, y   S. 
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Example 4.4:  

Let S = Z,:
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    a, b   Z+. 

Then there exists a Jordan right derivation dR : S   X  such that    

 dR

































000

00

0

a

ba

  = 
















000

000

00 a

    a, b   Z+. 

Then FR is a generalized right derivation associated with Jordan right derivation on S.   

 

Definition 4.5: Let S be a semiring and X a S-module. An additive mapping FR : S   X  is 

called a generalized Jordan right derivation associated with right derivation, if there exists a 

right derivation dR : S  X such that FR(x2) = FR(x)x + dR(x)x   x   S. 

 

Definition 4.6: Let S be a semiring and X a S-module. An additive mapping FR : S   X   

is called a generalized Jordan right derivation associated with Jordan right derivation,  

if there exists a Jordan right derivation dR : S  X such that FR(x2) = FR(x)x + dR(x)x    x 
 S.  

Example 4.7: The mappings FR and dR given in example 4.4, are generalized Jordan right 

derivation  associated with right (Jordan right) derivation on the given semiring. 

Remark 4.8:  Every generalized right derivation associated with Jordan right derivation on a  

Semiring S is a generalized Jordan right derivation associated with Jordan right derivation but  

the converse need not be true.   

Lemma 4.9: Let (S, +,  ) be an additively commutative semiring. Sum of two generalized 

right derivation associated with Jordan right derivation on S is again a generalized  right 

derivation associated with Jordan right derivation. 

Proof: Let S be an additively commutative semiring. Let FR1 , FR2  : S   X be a  generalized 

right derivation associated with Jordan right derivation.  

To prove: FR1 + FR2   is a generalized right derivation associated with Jordan right derivation              

               FR1 (xy) + FR2 (xy)   =  FR1(x)y + dR1(y)x + FR2(x)y + dR2(y)x                          

                              =  (FR1 + FR2)(x)y + (dR1 + dR2)(y)x 
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   FR1 (xy) + FR2 (xy)   =  (FR1 + FR2)(x)y + (dR1 + dR2)(y)x 

                      

 FR1 + FR2 is a generalized right derivation associated with Jordan right derivation. 

 

Lemma 4.10: Let (S, +,  ) be an additively commutative semiring. Sum of two generalized  

Jordan right derivation associated with Jordan right derivation on S is again a generalized  

Jordan right derivation associated with Jordan right derivation. 

Proof:  Let S be an additively commutative semiring.  

Let FR1 , FR2  : S  X be a  generalized Jordan right derivation associated with Jordan right 

derivation.  

To prove: FR1 + FR2   is a generalized Jordan right derivation associated with Jordan right 

derivation.             

               (FR1 + FR2)(x2)  = FR1(x2) + FR2(x2)   

                                         

                                        = FR1 (x)x + dR1 (x)x + FR2 (x)x + dR2(x)x 

                                          

                                        = (FR1 + FR2)(x)x + (dR1 + dR2)(x)x                      

 FR1 + FR2 is a generalized Jordan right derivation associated with Jordan right derivation. 

Lemma 4.11: Let S be a multiplicatively cancellative semiring. Suppose that a   S such that  

(ax)a = (xa)a  x  S, then  a  Z(S). 

Proof: Let S be a multiplicatively cancellative semiring.  

Claim: a  Z(S) 

Suppose (ax)a = (xa)a  x   S……….. (1)  Replace x by xr in (1) , we get                             

(a(xr))a = ((xr)a)a    x   S 

                            (ax)ra = (xa)ra ………. (2)   
Since S is a multiplicatively cancellative semiring,  ax = xa ,   x   S 

 a  Z(S)            

Theorem 4.12: Let S be a 2-torsion free prime semiring. Let X be a S-module such that  

aSx = 0   a = 0  or  x = 0  a  S, x X. If  S admits a generalized right derivation 

FR associated with a non zero Jordan right derivation dR , then S is commutative.  
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Abstract: In the year 2015, Chandramouleeswaran and others introduced the notion of 

semiring valued graphs (briefly called S-valued graphs). In the same year, Jeyalakshmi, in her 

work, discussed the concept of vertex domination of S-valued graphs. K.M. Kathiresan, 

G.Marimuthu and M. Sivanantha Saraswathi, introduced the boundary domination in graphs. 

Mohammed Alatif, Putaswamy and Nayaka introduced the concept of connected boundary 

domination in graphs Motivated by this, in this paper, we discuss the Connected Boundary 

Weight Domination On S-Valued Graphs. 
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1. INTRODUCTION : 

    P Sampathkumar and Walikar introduced the concept of connected domination in 

graphs[14]. Kathiresan and others introduced the concept of boundary domination in graphs[9]. 

Putaswamy and Mohammed introduced the concept of boundary edge domination in 

graphs[13]. Mohammed Alatif, Putaswamy and Nayaka introduced the concept of connected 

boundary domination in graphs[12]. Chandramouleeswaran and others introduced the concept 

of S-valued graphs[13]. Jeyalakshmi and Chandramouleeswaran introduced the concept of 

vertex domination in S-valued graphs[4]. Mangalalavanya and Chandramouleeswaran 

introduced the concept of edge domination in S-valued graphs[10]. Arul Devi and Thiruveni 

introduced the concept of  Boundary weight domination on S-valued graphs[1]. In this paper 

we introduce the concept of Connected boundary weight domination on S-valued graphs. 
 

2. PRELIMINARIES : 

 Definition 2.1. [9] 

         Let G be a simple graph G=(V, E) with vertex set 𝑉(𝐺) = {𝑣1, 𝑣2, … . , 𝑣𝑛}.  For 𝑖 ≠ 𝑗, a 

vertex 𝑣𝑖 is a boundary vertex of  𝑣𝑗  if  𝑑(𝑣𝑖 , 𝑣𝑡) ≤  𝑑(𝑣𝑗 , 𝑣𝑡)forall 𝑣𝑡 ∈ 𝑁(𝑣𝑖). A vertex v 

is called a boundary neighbour of u if v is a nearest boundary of u. If 𝑢 ∈ 𝑉, then the 

boundary neighbourhood of u denoted by 𝑁𝑏(𝑢) is defined as 𝑁𝑏(𝑢) = {𝑣 ∈ 𝑉 ∶ 𝑑(𝑢,𝑤) ≤𝑑(𝑢, 𝑢) 𝑓𝑜𝑟𝑎𝑙𝑙 𝑤 ∈ 𝑁(𝑢)} 
Definition 2.2 [6] 

     A subset S of V(G) is called a boundary dominating set if every vertex of  V-S is boundary 

dominated by some vertex of  S. The minimum taken over all boundary dominating sets of a 

graph G is called the boundary domination number on G and is denoted by 𝛾𝑏(𝐺). 

mailto:aruldevika.22@gmail.com
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Definition 2.3.[8] 

    A boundary dominating set S of a connected graph G is called the connected boundary 

dominating set if the induced subgraph <S> of G is connected. The minimum cardinality of a 

cb-set is called the connected boundary domination number 𝛾𝑐𝑏(𝐺). 
Definition 2.4 [6]  

    Let 𝐺𝑆 = (𝑉, 𝐸, 𝜎, 𝜓) be a S-valued graph by 𝑉𝑆 mean the set 𝑉 𝑋 𝑆 and 𝐸𝑆 mean the set 𝐸 𝑋 𝑆  any element of 𝑉𝑆 will be denoted by 𝑣𝑖(𝑠𝑖) where 𝑣𝑖  ∈ 𝑉 and 𝑠𝑖  ∈ 𝑆 forall  𝑖 =1,2, … , 𝑛. Similarly, any element of 𝐸𝑆 will be denoted by 𝑒𝑖𝑗(𝑠𝑖,𝑗) where 𝑒𝑖𝑗 = (𝑣𝑖 , 𝑣𝑗) ∈𝐸 𝑎𝑛𝑑 𝑠𝑖𝑗 = min{𝑠𝑖, 𝑠𝑗}. 
Definition 2.5 [4] 

    Consider the S-valued graph GS= (𝑉𝑆, 𝐸𝑆). where 𝑉𝑆 = { 𝑣𝑖(𝑠𝑖)/𝑣𝑖 ∈ 𝑉 𝑎𝑛𝑑 𝑠𝑖  ∈𝑆}𝑎𝑛𝑑 𝐸𝑆 = {𝑒𝑖𝑗(𝑠𝑖,𝑗)}  
 The order of GS is defined as 𝑝𝑆 = (|𝑉|𝑆, |𝑉|) 

 The size of GS is defined as 𝑞𝑆 = (|𝐸|𝑆, |𝐸|) 

 The open neighbourhood of  𝑣𝑖  in GS is defined as 

       𝑁𝑆(𝑣𝑖) = {(𝑣𝑗 , 𝜎(𝑣𝑗))|(𝑣𝑖, 𝑣𝑗) ∈ 𝐸, 𝜓(𝑣𝑖 , 𝑣𝑗) ∈ 𝑆}. 
 The closed neighbourhood of  𝑣𝑖   in GS is defined as  

 𝑁𝑆[𝑣𝑖] = 𝑁𝑆(𝑣𝑖) ∪ {𝑣𝑖 , 𝜎(𝑣𝑖))}. 
Analogously, we can define the open(closed) neighbourhood of an edge in GS. 

Definition 2.6:[1] 

        Consider the S-valued graph GS= (𝑉𝑆, 𝐸𝑆) where 𝑉𝑆 = {𝑣1(𝑠1),  𝑣2(𝑠2),…… . , 𝑣𝑛(𝑠𝑛)}. 
For 𝑖 ≠ 𝑗, a vertex 𝑣𝑖(𝑠𝑖) is said to be a boundary vertex of  𝑣𝑗(𝑠𝑗) if  𝑑𝑖𝑠𝑡𝑆(𝑣𝑖(𝑠𝑖) , 𝑣𝑡(𝑠𝑡)) ≤ 𝑑𝑖𝑠𝑡𝑆(𝑣𝑗(𝑠𝑗) , 𝑣𝑡(𝑠𝑡)) forall  𝑣𝑡(𝑠𝑡) ∈ 𝑁𝑆(𝑣𝑗(𝑠𝑗)). 

Definition 2.7:[1] 

        Consider the S-valued graph GS= (𝑉𝑆, 𝐸𝑆) where 𝑉𝑆 = {𝑣1(𝑠1),  𝑣2(𝑠2),…… . , 𝑣𝑛(𝑠𝑛)}. 
A vertex 𝑣𝑖(𝑠𝑖) ∈ 𝑉𝑆 is called boundary neighbour of a vertex 𝑣𝑗(𝑠𝑗) ∈ 𝑉𝑆 if 𝑣𝑖(𝑠𝑖) is a 

nearest boundary of 𝑣𝑗(𝑠𝑗). If 𝑣𝑗(𝑠𝑗) ∈ 𝑉𝑆, then the boundary neighbourhood of 𝑣𝑗(𝑠𝑗), 
denoted by 𝑏𝑁𝑆(𝑣𝑗(𝑠𝑗), is defined to be the set 𝑏𝑁𝑆(𝑣𝑗(𝑠𝑗)) = {𝑣𝑖(𝑠𝑖) ∈ 𝑉𝑆/𝑑𝑖𝑠𝑡𝑆(𝑣𝑖(𝑠𝑖) , 𝑣𝑡(𝑠𝑡)) ≤  𝑑𝑖𝑠𝑡𝑆(𝑣𝑗(𝑠𝑗) , 𝑣𝑡(𝑠𝑡)) forall  𝑣𝑡(𝑠𝑡) ∈ 𝑁𝑆(𝑣𝑗(𝑠𝑗))}.  

Definition 2.8:[1] 

        The boundary degree of a vertex 𝑣𝑗(𝑠𝑗)  ∈ 𝑉𝑆, denoted by 𝑏𝑑𝑒𝑔𝑆(𝑣𝑗(𝑠𝑗) =(|𝑏𝑁𝑆(𝑣𝑗(𝑠𝑗))|𝑆, |𝑏𝑁(𝑆)|). The maximum and minimum boundary degree of the graph  GS  

are denoted respectively be,  

        Δ𝑆𝑏(GS) = 𝑚𝑎𝑥𝑣𝑗(𝑠𝑗)∈𝑉𝑆(|𝑏𝑁𝑆(𝑣𝑗(𝑠𝑗))|𝑆, |𝑏𝑁𝑆(𝑣𝑗(𝑠𝑗))|) 

        δ𝑆𝑏(GS) = 𝑚𝑖𝑛𝑣𝑗(𝑠𝑗)∈𝑉𝑆(|𝑏𝑁𝑆(𝑣𝑗(𝑠𝑗))|𝑆, |𝑏𝑁𝑆(𝑣𝑗(𝑠𝑗))|) 

Definition 2.9:[1]A vertex 𝑣𝑗(𝑠𝑗) is said said to be a boundary weight dominating vertex of a 

vertex 𝑣𝑖(𝑠𝑖) if 𝑣𝑖(𝑠𝑖) is a boundary neighbour of 𝑣𝑗(𝑠𝑗). A subset 𝐷𝑆 ⊆ 𝑉𝑆 is called boundary 

weight dominating set if every vertex 𝑉𝑆 − 𝐷𝑆 is boundary weight dominated by some vertex 

of 𝐷𝑆. The minimum cardinality of all boundary weight dominating set of a graph GS is called 

boundary weight domination number of GS and is denoted by 𝛾𝑏𝑆(𝐺𝑆).  
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3. CONNECTED BOUNDARY WEIGHT DOMINATION ON S-VALUED GRAPHS 

      In this section we introduce the notion of connected boundary weight domination in S-

valued graphs. 

Definition 3.1: 

 A boundary weight dominating set DS of a connected S-valued graph GS is called the 

connected boundary weight dominating set, if the induced subgraph <HS> of GS is connected. 

The minimum cardinality of a connected boundary weight dominating set is called the 

connected boundary weight domination number, and it is denoted by 𝛾𝑐𝑏𝑆 (𝐺𝑆). 
Example 3.2: 

Consider the semiring S=({0,a,b,c,d,e},+,∙,≼) with the following Cayley tables. 

 
Consider the S-valued graph GS= (𝑉𝑆, 𝐸𝑆), 

 

 
  

One can easily verify that the boundary degree of each vertices of GS as follows: 𝑏𝑑𝑒𝑔𝑆(𝑣1(𝑒)) = (𝑒, 2), 𝑏𝑑𝑒𝑔𝑆(𝑣2(𝑑)) = (𝑑, 2), 𝑏𝑑𝑒𝑔𝑆(𝑣3(𝑒)) = (𝑒, 2), 𝑏𝑑𝑒𝑔𝑆(𝑣4(𝑎)) = (𝑒, 3), 𝑏𝑑𝑒𝑔𝑆(𝑣5(𝑑)) = (𝑒, 3), 𝑏𝑑𝑒𝑔𝑆(𝑣6(𝑑)) = (𝑑, 2) 𝐻𝑆 = {𝑣3(𝑒), 𝑣2(𝑑), 𝑣6(𝑑)} is a connected boundary weight dominating vertex set. 

The minimum cardinality of a connected boundary weight dominating set of 𝛾𝑐𝑏𝑆 (𝐺𝑆) =(𝑒, 3) 

The maximum degree of GS  is Δ𝑆𝑏(GS) = (𝑒, 3)  and minimum degree of GS    is 𝛾𝑐𝑏𝑆 (𝐺𝑆) =(𝑑, 2) 
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Theorem 3.6: 

       For any path  𝑃𝑛𝑆 , 𝑛 ≥ 3,the boundary weight dominating vertex number is 

 𝛾𝑏𝑆(𝑃𝑛𝑆) = (|𝐷|𝑆, 𝑛 − 2). 
Proof: Consider the path 𝑃3𝑆  is given by, 𝑣1(𝑠1), 𝑒12(𝑠12), 𝑣2(𝑠2)𝑒23(𝑠23), 𝑣3(𝑠3).     𝑃𝑣1𝑣2𝑆 = {𝑣1(𝑠1), 𝑒12(𝑠12), 𝑣2(𝑠2)}.  𝑤(𝑃𝑣1𝑣2𝑆 ) = ∑𝜓(𝑒12) =  𝜓(𝑒12) 𝑎𝑛𝑑 𝑙(𝑃𝑣1𝑣2𝑆 ) = 1.  𝑃𝑣1𝑣3𝑆 = {𝑣1(𝑠1), 𝑒12(𝑠12), 𝑣2(𝑠2)𝑒23(𝑠23)𝑣3(𝑠3)}.  𝑤(𝑃𝑣1𝑣3𝑆 )= ∑𝜓(𝑒12) +  𝜓(𝑒23) 𝑎𝑛𝑑 𝑙(𝑃𝑣1𝑣2𝑆 ) = 2.  𝑑𝑖𝑠𝑡𝑆(𝑣1(𝑠1), 𝑣2(𝑠2)) = min{𝑤(𝑃𝑣1𝑣2𝑆 ), 𝑙(𝑃𝑣1𝑣2𝑆 )} = (𝜓(𝑒12), 1); 𝑑𝑖𝑠𝑡𝑆(𝑣1(𝑠1), 𝑣3(𝑠3)) = min{𝑤(𝑃𝑣1𝑣3𝑆 ), 𝑙(𝑃𝑣1𝑣3𝑆 )} = (𝜓(𝑒12) +  𝜓(𝑒23), 2);  
 𝑃𝑣2𝑣3𝑆 = {𝑣2(𝑠2)𝑒23(𝑠23), 𝑣3(𝑠3)}.  𝑤(𝑃𝑣2𝑣3𝑆 ) = ∑𝜓(𝑒23) =  𝜓(𝑒23) 𝑎𝑛𝑑 𝑙(𝑃𝑣2𝑣2𝑆 ) = 1.  𝑑𝑖𝑠𝑡𝑆(𝑣2(𝑠2), 𝑣3(𝑠3)) = min{𝑤(𝑃𝑣2𝑣3𝑆 ), 𝑙(𝑃𝑣2𝑣3𝑆 )} = (𝜓(𝑒33), 1) 

 

Let 𝐷𝑆 = {𝑣2(𝑠2)}. 𝑇ℎ𝑒𝑛 𝑉𝑆 − 𝐷𝑆 = {𝑣1(𝑠1), 𝑣2(𝑠2), 𝑣3(𝑠3)} is  boundary weight dominated 

by  𝐷𝑆. If every vertex 𝐷𝑆 is a connected boundary weight dominating vertex set. 

Therefore 𝛾𝑐𝑏𝑆 (𝑃𝑛𝑆) = (|𝐷𝑆|𝑆,|𝐷𝑆|) = (𝜎(𝑣2), 1) = (|𝐷𝑆|𝑆, 1). where 𝑛 = 3. 
We know that, a vertex 𝑣𝑖(𝑠𝑖) will dominate 𝑣𝑖−1(𝑠𝑖−1) and 𝑣𝑖+1(𝑠𝑖+1) in any path 𝑃𝑛𝑆, where 𝑛 = 3. Proceeding like this, the connected boundary weight domination number of the S-

valued path 𝛾𝑏𝑆(𝑃4𝑆) = (|𝐷𝑆|𝑆, 2) . In general, the connected boundary weight domination 

number of the S-valued path 𝛾𝑏𝑆(𝑃𝑛𝑆) = (|𝐷𝑆|𝑆, 𝑛 − 2) .   where 𝑛 ≥ 5,  where 𝐷𝑆is a 

connected boundary weight dominating vertex set. 

Theorem. 3.7: 

           For any complete S-valued graph , 𝐾𝑛𝑆, 𝑛 ≥ 4, the connected boundary weight 

dominating vertex number is  𝛾𝑏𝑆(𝐾𝑛𝑆) = (|𝐷𝑆|𝑆, 1). 
 

Proof: Consider the complete graph 𝐾𝑛𝑆,  is given by the path, 𝑣1(𝑠1), 𝑒12(𝑠12), 𝑣2(𝑠2)𝑒23(𝑠23), 𝑣3(𝑠3)𝑒34(𝑠34)𝑣4(𝑠4)𝑒42(𝑠42)𝑣2(𝑠2)𝑒12(𝑠12)𝑣1(𝑠1)𝑒13(𝑠13)𝑣3(𝑠3)    𝑃𝑣1𝑣2𝑆 = {𝑣1(𝑠1) 𝑒12(𝑠12) 𝑣2(𝑠2), 𝑣1(𝑠1) 𝑒13(𝑠13)𝑣3(𝑠3)𝑒23(𝑠23) 𝑒34(𝑠34)𝑣2(𝑠2),  
 𝑣1(𝑠1)𝑒14(𝑠14) 𝑣4(𝑠4)𝑒34(𝑠34)𝑣3(𝑠3)𝑒23(𝑠23)𝑣4(𝑠4)𝑣2(𝑠2)} 𝑤(𝑃𝑣1𝑣2𝑆 ) = {𝜓(𝑒12) + 𝜓(𝑒13) + 𝜓(𝑒13) + 𝜓(𝑒23) + +𝜓(𝑒34)}𝑎𝑛𝑑 𝑙(𝑃𝑣1𝑣3𝑆 ) = min(1, 2, 3) = 1 

  𝑃𝑣1𝑣3𝑆 = {𝑣1(𝑠1) 𝑒13(𝑠13) 𝑣3(𝑠3), 𝑣1(𝑠1)𝑒14(𝑠14)𝑣4(𝑠4)𝑒34(𝑠34)𝑣3(𝑠3),  
 𝑣1(𝑠1)𝑒12(𝑠12) 𝑣2(𝑠2)𝑒23(𝑠23)𝑣3(𝑠3)} 𝑤(𝑃𝑣1𝑣3𝑆 ) = {𝜓(𝑒13) + 𝜓(𝑒14) + 𝜓(𝑒43) + 𝜓(𝑒12) + 𝜓(𝑒23)}𝑎𝑛𝑑 𝑙(𝑃𝑣1𝑣3𝑆 ) = min(1, 2, 3) = 1 𝑃𝑣1𝑣4𝑆 = {𝑣1(𝑠1) 𝑒14(𝑠14) 𝑣4(𝑠4), 𝑣1(𝑠1)𝑒13(𝑠13)𝑣3(𝑠3)𝑒34(𝑠34)𝑣4(𝑠4),  
 𝑣1(𝑠1)𝑒12(𝑠12) 𝑣2(𝑠2)𝑒23(𝑠23)𝑣3(𝑠3)𝑒34(𝑠34)𝑣4(𝑠4)} 𝑤(𝑃𝑣1𝑣3𝑆 ) = {𝜓(𝑒14) + 𝜓(𝑒13) + 𝜓(𝑒34) + 𝜓(𝑒12) + 𝜓(𝑒23)}𝑎𝑛𝑑 𝑙(𝑃𝑣1𝑣4𝑆 ) = min(1, 2, 3) = 1 
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𝑑𝑖𝑠𝑡𝑆(𝑣1(𝑠1), 𝑣2(𝑠2)) = min(𝜓(𝑒12) + 𝜓(𝑒13) + 𝜓(𝑒13) + 𝜓(𝑒23) + +𝜓(𝑒34), 1) ;                        𝑑𝑖𝑠𝑡𝑆(𝑣1(𝑠1), 𝑣3(𝑠3)) = min ( 𝜓(𝑒13) + 𝜓(𝑒14) + 𝜓(𝑒43) + 𝜓(𝑒12) + 𝜓(𝑒23), 1); 𝑑𝑖𝑠𝑡𝑆(𝑣1(𝑠1), 𝑣4(𝑠4)) = min( 𝜓(𝑒14) + 𝜓(𝑒13) + 𝜓(𝑒34) + 𝜓(𝑒12) + 𝜓(𝑒23), 1). 
                      𝑏𝑁𝑆(𝑣1(𝑠1) = { 𝑣2(𝑠2), 𝑣3(𝑠3), 𝑣4(𝑠4)}; 𝑏𝑑𝑒𝑔𝑁𝑆(𝑣1(𝑠1) = {𝑠2 + 𝑠3+𝑠4, 3}  

Let 𝐷1𝑆 = {𝑣1(𝑠1)}, 𝑉𝑆 − 𝐷1𝑆 = { 𝑣2(𝑠2), 𝑣3(𝑠3), 𝑣4(𝑠4)}. 𝐸𝑣𝑒𝑟𝑦 vertex  in 𝑉𝑆 −𝐷1𝑆 𝑖𝑠 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 by 𝐷1𝑆,  𝐷1𝑆is a connected boundary weight dominating vertex set 

provided 𝜎(𝑠1) =  𝑠1, 𝑠2, 𝑠3, 𝑠4 ≼ 𝑠1, 𝛾𝑏𝑆(𝐷1𝑆) = (|𝐷1𝑆|𝑆, 1). 

Proceeding like this, we can find the other vertices of the bounded neighbourhood is, 𝑏𝑁𝑆(𝑣2(𝑠2) = { 𝑣1(𝑠1), 𝑣3(𝑠3), 𝑣4(𝑠4)}; 𝑏𝑑𝑒𝑔𝑁𝑆(𝑣2(𝑠2) = {𝑠1 + 𝑠3+𝑠4, 3}  

Let 𝐷2𝑆 = {𝑣2(𝑠2)}, 𝑉𝑆 − 𝐷2𝑆 = { 𝑣1(𝑠1), 𝑣3(𝑠3), 𝑣4(𝑠4)}. 𝐸𝑣𝑒𝑟𝑦 vertex  in 𝑉𝑆 −𝐷2𝑆 𝑖𝑠 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 by 𝐷2𝑆, 𝐷2𝑆, is a connected boundary weight dominating vertex set 

provided 𝜎(𝑠2) =  𝑠1, 𝑠2, 𝑠3, 𝑠4 ≼ 𝑠2, 𝛾𝑏𝑆(𝐷2𝑆) = (|𝐷2𝑆|𝑆, 1). 𝑏𝑁𝑆(𝑣3(𝑠3) = { 𝑣2(𝑠2), 𝑣1(𝑠1), 𝑣4(𝑠4)}; 𝑏𝑑𝑒𝑔𝑁𝑆(𝑣3(𝑠3) = {𝑠1 + 𝑠2+𝑠4, 3}  

Let 𝐷3𝑆 = {𝑣3(𝑠3)}, 𝑉𝑆 − 𝐷3𝑆 = { 𝑣1(𝑠1), 𝑣2(𝑠2), 𝑣4(𝑠4)}. 𝐸𝑣𝑒𝑟𝑦 vertex  in 𝑉𝑆 −𝐷3𝑆 𝑖𝑠 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 by 𝐷3𝑆, 𝐷3𝑆,is a connected boundary weight dominating vertex set 

provided 𝜎(𝑠3) =  𝑠1, 𝑠2, 𝑠3, 𝑠4 ≼ 𝑠3, 𝛾𝑏𝑆(𝐷3𝑆) = (|𝐷3𝑆|𝑆, 1). 𝑏𝑁𝑆(𝑣4(𝑠4) = { 𝑣2(𝑠2), 𝑣1(𝑠1), 𝑣3(𝑠3)}; 𝑏𝑑𝑒𝑔𝑁𝑆(𝑣4(𝑠4) = {𝑠1 + 𝑠2+𝑠3, 3}  

Let 𝐷4𝑆 = {𝑣4(𝑠4)}, 𝑉𝑆 − 𝐷4𝑆 = { 𝑣1(𝑠1), 𝑣2(𝑠2), 𝑣3(𝑠3)}. 𝐸𝑣𝑒𝑟𝑦 vertex  in 𝑉𝑆 −𝐷𝑆 𝑖𝑠 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 by 𝐷4𝑆 , 𝐷4𝑆 is a connected boundary weight dominating vertex set 

provided 𝜎(𝑠4) =  𝑠1, 𝑠2, 𝑠3, 𝑠4 ≼ 𝑠4, 𝛾𝑏𝑆(𝐷4𝑆) = (|𝐷4𝑆|𝑆, 1). 

Thus we conclude that for 𝐾4𝑆, then the set 𝐷𝑆 = {𝑣𝑖(𝑠𝑖)} will be a connected boundary 

weight dominating vertex set if  𝑠𝑗 ≼ 𝑠𝑖, forall 𝑖 ≠ 𝑗. 
Since any vertex in a complete graph 𝐾𝑛𝑆 will be dominated all vertices preceeding as above 

we conclude that 𝛾𝑐𝑏𝑆 (𝐾𝑛𝑆 )= (|𝐷𝑆|𝑆, 1) 𝑓𝑜𝑟 some 𝑠𝑖 ∈ 𝑆 such that 𝑠𝑗 ≼ 𝑠𝑖, forall 𝑖 ≠ 𝑗 
Theorem 3.8: 

        For any complete bipartite S-valued graph, then the connected boundary weight 

dominating vertex number 𝛾𝑐𝑏𝑆 (𝐾𝑚𝑛𝑆  )= (|𝐷𝑆|𝑆, 2). 

Proof: 

    Let  𝑉1𝑆 and 𝑉2𝑆 be partition of the vertex set of 𝐾𝑚𝑛𝑆 . Let  Then 𝑣1(𝑠1) ∈ 𝑉1𝑆. 𝑇ℎ𝑒𝑛 𝑑𝑖𝑠𝑡𝑆(𝑣1(𝑠1), 𝑣2(𝑠2)) = (𝜓(𝑒12) + 𝜓(𝑒23), 2) forall 𝑣2(𝑠2) ∈  𝑉1𝑆 − { 𝑣1(𝑠1)} and every 

vertex 𝑣2(𝑠2) 𝑖𝑛 𝑉1𝑆  is a boundary  vertex 𝑣1(𝑠1) of except 𝑣1(𝑠1). Similarly if  𝑢1(𝑠1) ∈𝑉2𝑆, then every vertex of 𝑣2(𝑠2) is a connected boundary neighbour of 𝑢1(𝑠1) except 𝑢1(𝑠1). 

Thus 𝛾𝑐𝑏𝑆 (𝐾𝑚𝑛𝑆  )= (|𝐷𝑆|𝑆, 2. 
Theorem 3.9: 

     Let 𝑇𝑆 be a S-valued tree of order (|𝑉|𝑆, 𝑛) with (|𝑉1|𝑆, 𝑛1) pendent vertices. Then the 

connected boundary weight dominating vertex number is 𝛾𝑐𝑏𝑆 (𝑇𝑆 )= (|𝐷𝑆|𝑆, 𝑛 − 𝑛1). 
Proof: Let 𝑉1𝑆 be the set of all pendent vertices of the tree 𝑇𝑆 of order (|𝑉1|𝑆, 𝑛1) . Then 

every vertex in 𝑉𝑆 − 𝑉1𝑆 has a maximum weight and boundary neighbor in 𝑉1𝑆.Then the 

connected boundary weight dominating vertex number is 𝛾𝑐𝑏𝑆 (𝑇𝑆 )= (|𝐷𝑆|𝑆, 𝑛 − 𝑛1). 
Theorem 3.10: 

     For any connected S-valued graph GS, 𝛾𝑏𝑆(𝐺𝑆) ≤ 𝛾𝑐𝑏𝑆 (𝐺𝑆). 
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Proof: 

           Every connected boundary weight dominating set of a graph GS is also a boundary 

weight dominating vertex set. The boundary weight dominating vertex set is need not be 

connected. So the minimum number of vertices are dominated by the graph 𝐺𝑆. But the 

connected boundary weight dominating vertex set must be connected.  

Hence 𝛾𝑏𝑆(𝐺𝑆) ≤ 𝛾𝑐𝑏𝑆 (𝐺𝑆). 
 

4. CONCLUSION: 

             In this paper, we have studied the notion of connected boundary weight dominating 

vertex sets and connected boundary weight dominating vertex number of S-valued graphs. 

Further, we have introduced the notion of connected boundary weight dominating polynomials 

of a given S-valued graphs and determined the same for certain class of S-valued graphs. In 

future, we have proposed to study the  boundary edge weight domination on S-valued graphs 

and boundary edge weight domination number on S-valued graphs. 

 

REFERENCES: 

[1] Arul Devi A and Thiruveni V, Boundary weight domination on S-valued graphs, Indian 

      Journal of Natural Sciences, (IJONS) vol-12, Issue-70, Feb 2022. 

[2] Godsil C and Royle G, Algebraic Graph Theory , Springer-Verlag, New York, 2001. 

[3] Jeyalakshmi. S. and Chandramouleeswaran. M Connected S-Valued graphs, 

      Mathematical Sciences International Research Journal, ISSN : 2278-8697. Vol 4, Issue    

      2,2015,pp. 323-325. 

[4] Jeyalakshmi. S. and Chandramouleeswaran. M Vertex Domination on S-Valued 

     graphs, IOSR Journal of Mathematics., Vol 12, 2016, PP 08-12. 

[5] Jeyalakshmi. S. and Chandramouleeswaran. M Diameter on S-Valued graphs, 

     Mathematical Sciences International Research Journal, 2017, 6, 121-123. 

[6] Jeyalakshmi. S. and Chandramouleeswaran. M Degree regular on S-Valued graphs, 

      Mathematical Sciences Engineering Applications 2015, 4, 326-328. 

[7] Jeyalakshmi. S., Rajkumar. M and Chandramouleeswaran. M Regularity of S- 

     Valued graphs, Global Journal of Pure Applied Mathematics., Vol 2, 2015, PP 2971-2978. 

[8] Jonathan Golan Semiring and their Applications, Kluwer Academic Publishers, London. 

[9] Kathiresan K.M, Marimuthu G and Sivanantha Saraswathi M, Boundary Domination in 

     Graphs, Kragujevac j. Math. 33(2010) 63-70. 

 

 
 
 
 
 
 
 
 



87 

 

ON INTUITIONISTIC FUZZY H-IDEALS IN Z-ALGEBRAS 

S. Sowmiya*  and   M. Chandramouleeswaran** 
* Assistant Professor, Department of Mathematics,  

Sri Ramakrishna Engineering College,   Coimabatore-22.  

E-mail:  vinayagarphd@gmail.com 
** M.Chandramouleeswaran, Associate Professor and Head (Retd.),  

PG and Research Department of Mathematics,  

Saiva Bhanu Kshatriya College, Aruppukottai 626 101. 

E-mail: moulee59@gmail.com 

 

ABSTRACT: In this article, the concept of intuitionistic fuzzy H-Ideals in Z-algebras is 

presented and some of their features are studied. The Z-homomorphic image and inverse image 

of intuitionistic fuzzy H-ideals in Z-algebras are examined. In addition, the Cartesian product 

of intuitionistic fuzzy H-ideals in Z-algebras is also investigated. 

Keywords: Z-algebra, H-ideal, intuitionistic fuzzy H-ideal 

 

1. INTRODUCTION: 

Imai and Iseki [4,5] introduced two new classes of abstract algebras: BCK-algebras and 

BCI-algebras. In 2017, Chandramouleeswaran et al.[3] introduced  the concept of Z-algebras 

as a new structure of algebra based on propositional calculus. The Z-algebra is not a 

generalization of BCK/BCI-algebras. In 1965, Zadeh [8] introduced the fundamental concept 

of a fuzzy set which is a generalization of an ordinary set. In 1986, the idea of “intuitionistic 
fuzzy set” was first published by Atanassov [1], as a generalization of the notion of fuzzy set. 

In addition to the membership function, the idea of an intuitionistic fuzzy set also includes a 

non-membership function. Since then, other researchers have examined intuitionistic fuzzy 

structures in various algebras. In our earlier paper [7], we introduced fuzzy H-ideals in Z-

algebras. In this article, we define the notion of intuitionistic fuzzy H-ideals in Z-algebras and 

investigated some of their properties.  

 

2.  PRELIMINARIES: 

In this section we recall some basic definitions that are needed for our work. 

Definition 2.1[3]:  A Z-algebra  0,,X  is a nonempty set X with a constant 0 and a binary 

operation   satisfying the following conditions: 

00x)1Z(   

xx0)2Z(   

xxx)3Z(   

xyyx)4Z(   , when 0x   and 0y     x, y   X. 

Definition 2.2[3]: Let  0,,X   be a Z-algebra and I be a subset of X. Then, I is called an Z-

ideal of X, if it satisfies the following conditions: For all x, y in X, 

i) 0  I 

ii) x  y  I and yI    x   I 
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Definition 2.3[7]: Let  0,,X   be a Z-algebra and I be a subset of X. Then, I is called an H-

ideal of X, if it satisfies the following conditions: For all x, y, z  in X, 

i) 0  I 

ii) I)zy(x   and yI     zx  I 

Definition 2.4[3]:  Let )0,,X(   and )0,,Y(  be two Z-algebras. A mapping  

)0,,Y()0,,X(:h   is said to be a Z-homomorphism of Z-algebras if 

)y(h)x(h)yx(h   for all Xy,x  . 

Definition 2.5[3]: Let )0,,Y()0,,X(:h   be a Z-homomorphism of  Z-algebras. Then 

1. h is called  a Z-monomorphism of Z-algebras  if h is 1-1. 

2. h is called an Z-epimorphism of Z-algebras if h is onto. 

3. h is called an Z-endomorphism of Z-algebras if h is a mapping from )0,,X(   into itself. 

Note : If  )0,,Y()0,,X(:h   is a Z-homomorphism then 0)0(h  . 

Definition 2.6[1]: Let X be a nonempty universal set. A fuzzy set A in X is characterized by a 

membership function A  which associates with each point x in X, a real number  xA  in 

the interval [0,1] with  xA  representing the “grade of membership” of x in A. 
That is, a  fuzzy set A in X is characterized by a membership function ]1,0[X:A  . 

Definition 2.7[7]:  Let )0,,X(  be a Z-algebra. A fuzzy set A in X with  membership function 

A  is said to be fuzzy H - ideal of a Z-algebra X if it satisfies the following conditions: For 

all x, y, z in X,  

(i)  A (0)   A (x)  

(ii) A  zx       y,zyxmin AA   
Definition 2.8[1]: An Intuitionistic Fuzzy Set (IFS) A in a nonempty set X is an object having 

the form   Xx|)x(),x(,xA AA   where ]1,0[X:A   denote the degree of 

membership and ]1,0[X:A   denote the degree of non-membership functions such that for 

each Xx  to the set A with 0 1)x()x( AA  . For the sake of simplicity, we shall use 

the symbol  AA ,A   for the IFS  Xx|)x(),x(,xA AA  . 

Definition 2.9[1]:  If      Xxx,x,xA AA    and      Xxx,x,xB BB   be any 

two intuitionistic fuzzy set of a nonempty set X. Then, 

1.         XxallforxxandxxiffBA BABA   

2. X  x allfor (x)  (x) and (x)  (x)  iff B A BABA   

3.     Xxx,x,xA AA
c   

4.             Xxx,xmax,x,xmin,xXx|)x(),x(,xBA BABABABA    

5.             Xxx,xmin,x,xmax,xXx|)x(),x(,xBA BABABABA  

  

6.        Xxx1,x,x,A AA
c

AA     

7.        Xxx,x1,x,A AAA

c

A    
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8.  
 


















i

iA
i

iA
i

i Xx)x(),x(,xA  

where ))x((inf)x(
ii

i
A

i
A 




 and  ))x((sup)x(
iA

i
iA

i




 . 

Definition 2.10[2]: Let  AA ,A   be an intuitionistic fuzzy set in a nonempty set X. For 

]1,0[t,s  ,    s)x(|Xxs;U AA   is called an upper s-level subset of A and 

   t)x(|Xxt;L AA   is called the  lower t-level subset of A. 

Definition 2.11[2]:  An IFS  A in a set X with the degree of membership ]1,0[X:A   and 

the degree of non-membership ]1,0[X:A   is said to have sup-inf property if for any subset 

T of X there exists Tx0   such that    tsupx A
Tt

0A 


  and     tinfx A
Tt

0A 


. 

Definition 2.12[6]: Let h be any function from a set X into a set Y. 

(i) Let     Xxx,x,xA AA   be an intuitionistic fuzzy set in X. Then image of A under 

h, denoted by         Yyy,y,yAh AhAh 
 
is an intuitionistic fuzzy set in Y, defined by: 

    
     







 




 

otherwise0

y)x(h|xyhifzsup
y

1
A

yhzAh
1

 

and  

    
     





 




 

otherwise0

y)x(h|xyhifzinf
y

1
A

yhzAh
1

 

 (ii) Let      Xxx,x,xB BB 
 
be an intuitionistic fuzzy set in Y. The pre-image of B 

under h, symbolized by         Xxx,x,xBh
BhBh

1
11  

  defined by: 

     xhx BBh 1    and        xhx BBh 1      for all Xx  is an intuitionistic fuzzy set of 

X. 

Definition 2.13[1]:  Let  AA ,A   and  BB ,B   be any two intuitionistic fuzzy sets of  

a nonempty set X. The Cartesian product BA  is given by  BABA ,BA    with 

membership function ]1,0[XX:BA     and the non-membership function 

]1,0[XX:BA    are defined by        y,xminy,x BABA    and 

      y,xmaxy,x BABA   for all Xy,x  . 

 

3. INTUITIONISTIC FUZZY H-IDEALS IN Z-ALGEBRAS: 

Definition 3.1: An intuitionistic fuzzy set ),(A AA   in a Z-algebra  0,,X   is called 

intuitionistic fuzzy H-ideal of X if it satisfies the following conditions: 

(i)    x0 AA    and    x0 AA   

(ii) A  zx       y,zyxmin AA   
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        Xz,y,xallfor,y,zyxmaxzx)iii( AAA       

Example 3.2: Let X= {0, 1, 2, 3} be a set with the following Cayley table: 

 0 1 2 3 

0 0 1 2 3 

1 0 1 3 3 

2 0 3 2 2 

3 0 3 2 3 

Then   0,,X   is a Z-algebra. Define an intuitionistic fuzzy set ),(A AA  in X as follows:  









3,2,1xif2.0

0xif6.0
)x(A   and   









3,2,1xif7.0

0xif3.0
)x(A  

Then A is an intuitionistic fuzzy H-ideal of a Z-algebra X. 

Theorem 3.3: Intersection of any two intuitionistic fuzzy H-ideals of a Z-algebra X is again 

an intuitionistic fuzzy H-ideal of X. 

Proof : For every Xz,y,x   

 0BA     0,0min BA      x,xmin BA   xBA                                       

 0BA     0,0max BA      x,xmax BA   xBA                                        

 zxBA       zx,zxmin BA     

                                 y,zyxmin,y,zyxminmin BBAA     

                           y,zyxmin BABA    

 zxBA       zx,zxmax BA   

                                  y,zyxmax,y,zyxmaxmax BBAA                                      

                           y,zyxmax BABA                   

Hence  BA  is an intuitionistic fuzzy H-ideal of a Z-algebra X. 

We generalize the above theorem as follows. 

Theorem 3.4: Let  i|Ai  be a family of intuitionistic fuzzy H-ideals of a Z-algebra X. 

Then 
i

iA  is an intuitionistic fuzzy H-Ideal of X. 

By using the definition of  cA , we can prove the following result 

Lemma 3.5:   An IFS  AA ,A   is an intuitionistic fuzzy H-ideal of a Z-algebra X if and 

only if the fuzzy sets  A  and  c
A )(  are fuzzy H-ideals of X. 

Theorem 3.6:  Let  AA ,A   be an IFS in a Z-algebra X. Then  AA ,A   is an 

intuitionistic fuzzy H-ideal of X if and only if  c
AA )(,A    and  A

c
A ,)(A   are 

intuitionistic fuzzy H-ideals of X. 

Proof: Let  AA ,A   be  an intuitionistic fuzzy H-ideal  of  a Z-algebra X. 

Let  Xz,y,x  . Then, 

)x()0()i( AA   and  A  zx       y,zyxmin AA   

)x()0()ii( AA   and      )y(,zyxmax)zx( AAA   
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)0(1)0()()iii( A
c

A  )x(1 A )x()( c
A  

 (iv) )zx(1)zx()( A
c

A     )}y(,zyxmin{1 AA   

                                                     )}y(1,zyx1max{ AA    

                                                     )}y()(,zyx)(max{ c
A

c
A   

 (v)   )0(1)0()( A
c

A  )x(1 A )x()( c
A  

 (vi)    )zx(1)zx()( A
c

A     )}y(,zyxmax{1 AA    

                                                               )y(1,zyx1min AA   

                                             )y()(,zyx)(min c
A

c
A   

From (i), (iii) and (iv) we get  c
AA )(,A   is an intuitionistic fuzzy H-ideal of  a Z-

algebra X. 

And, from (ii), (v) and  (vi)  we get  A
c

A ,)(A  is an intuitionistic fuzzy H-ideal of a                  

Z-algebra X. 

Conversely, assume that  c
AA )(,A   and   A

c
A ,)(A   are intuitionistic fuzzy                

H-ideals of a Z-algebra X. For any Xz,y,x  ,  

(i) )x()0( AA   and  )x()0( AA   

(ii)    )}y(,zyxmin{)zx( AAA  and   

   )y(,zyxmax)zx( AAA   

 Hence  AA ,A   is an intuitionistic fuzzy H-ideal of  a Z-algebra X. 

Analogously, we can prove the following result. 

Theorem 3.7: An IFS  AA ,A   is an intuitionistic fuzzy H-ideal of  a Z-algebra X  if 

and only if for all ]1,0[t,s  , the sets  s;U A  and  t;L A  are  either empty or H-ideals of 

X. 

Theorem 3.8: Let h be a homomorphism from a Z-algebra  0,,X   onto a Z-algebra  0,,Y   

and A be an intuitionistic  fuzzy H-ideal of X with sup-inf property. Then image of A, 

        Yyy,y,yAh AhAh    is an intuitionistic  fuzzy H-ideal of Y. 

Proof: Let Yc,b,a   with  ahx 1
0

   ,   bhy 1
0

  
 and   chz 1

0
  

 such that  

 
 

 tsupx A
aht

0A
1




 ;   
 

   
 

 tsupzandtsupy A
cht

0AA
bht

0A
11


 

 

 
 

 tinfx A
aht

0A 1



 ;   

 
   

 
 tinfzandtinfy A

cht
0AA

bht
0A 11


 

 

Now, 

  
 

   0tsup0)i( AA
0ht

Ah
1


 

 0A x
 

 tsup A
aht 1




  aAh  

  
 

   0tinf0)ii( AA
0ht

Ah 1


 
 0A x   

 tinf A
aht 1


    aAh  

        b,cbamin)iii( AhAh   = 

  
 

 
 
















tsup,tsupmin A

b1ht

A

cba1ht
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                                                                  0A000A y,)zy(xmin   

                                                               00A zx   

                                                             

 
 tsup A

ca1ht




      caAh                                                      

        
  

 
 

 















tinf,tinfmaxb,cbamax)iv( A
b1ht

A
cba1ht

AhAh  

                                                                      0A000A y,zyxmax   

                                                                 00A zx   

                                                               
 

 tinf A
ca1ht


   

  caAh   

                                                                

Hence  h(A) is an intuitionistic fuzzy H- ideal of  a Z-algebra Y. 

Theorem 3.9: Let )0,,Y()0,,X(:h   be a Z-homomorphism of Z-algebras and B be an 

intuitionistic fuzzy H-ideal of a Z-algebra Y. Then the inverse image of B, 

        Xxx,x,xBh
BhBh

1
11  

  is an intuitionistic fuzzy H-ideal of  a Z-algebra X. 

Proof:  Let Xz,y,x  . Now it is clear that  

      )0(0h0 BBB1h
    xhB   x

Bh 1                                                                              

      )0(0h0 BBB1h
    xhB   x

Bh 1                                                                               

      ))z(h)x(h(zxhzx BBBh 1              yh,zhyhxhmin BB   

                                                                                    yh,zyxhmin BB   

                                                                                    }y,zyxmin{
BhBh 11    

  

      ))z(h)x(h(zxhzx BBBh 1              yh,zhyhxhmax BB   

                                                                                  yh,zyxhmax BB   

                                                                                  )}y(,zyxmax{
BhBh 11     

  

Hence  Bh 1  is an intuitionistic fuzzy H-ideal of a Z-algebra X. 

Analogously, we can prove the following result. 

Theorem 3.10: Let    0,,Y0,,X:h   be an Z-epimorphism of Z-algebras. Let B be an 

intuitionistic fuzzy set of a Z-algebra Y. If  )B(h 1  is an intuitionistic fuzzy H-ideal of a                

Z-algebra X then B is an intuitionistic fuzzy H-ideal of a Z-algebra Y. 

Theorem 3.11: Let h be an Z-endomorphism of Z-algebra )0,,X(  . If A be an intuitionistic 

fuzzy H-ideal of X. Then the intuitionistic fuzzy set  hh AA
h ,A   is also an intuitionistic 

fuzzy H-ideal of X. 
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Proof: Follows directly from the definition. 

Theorem 3.12: Let A and B be two intuitionistic fuzzy H-ideals in a Z-algebra X. Then BA
is an intuitionistic fuzzy H-ideal of  XX . 

Proof:  Take   XXx,x 21  . 

Then        0,0min0,0 BABA       2B1A x,xmin   21BA x,x   

and          0,0max0,0 BABA       2B1A x,xmax   21BA x,x   

Now take       XXz,z,y,y,x,x 212121  . Then 

     )}zx(),zx(min{)zx,zx( 22B11A2211BA    

                                      

)}}y()),zy(x(min{)},y()),zy(x(min{min{ 2B222B1A111A   

                                      

)}}y(),y(min{))},zy(x()),zy(x(min{min{ 2B1A222B111A   

                                      )}y,y())),z,z()y,y(()x,x((min{ 21BA212121BA                

                    

      )}zx(),zx(max{)zx,zx( 22B11A2211BA    

                                      

)}}y()),zy(x(max{)},y()),zy(x(max{max{ 2B222B1A111A   

                                      

)}}y(),y(max{))},zy(x()),zy(x(max{max{ 2B1A222B111A   

                                     )}y,y())),z,z()y,y(()x,x((max{ 21BA212121BA     

            

Hence BA is an intuitionistic fuzzy H-ideal of   XX .  

Analogously, we can prove the following results. 

 

Theorem 3.13: Let A and B be two intuitionistic fuzzy sets of a Z-algebra X. If BA  is an 

intuitionistic fuzzy H-ideal of  XX , the following are true. 

1.    y0 BA    and    x0 AB    for all Xy,x  . 

2.    y0 BA    and     x0 AB    for all Xy,x  . 

 

Theorem 3.14: Let A and B be two intuitionistic fuzzy sets of a Z-algebra X such that BA  

is an intuitionistic fuzzy H-ideal of XX . Then either A or B is an intuitionistic fuzzy H-Ideal 

of X. 

 

4. CONCLUSION: 

       In this paper, intuitionistic fuzzy H-ideals in Z-algebras is introduced 

and investigated some of their useful properties. In our future study of fuzzy structure of                     

Z-algebras, may be the following topics should be considered: (i) to find translation of 

intuitionistic fuzzy H-ideals in Z-algebras, (ii) to find multiplication of intuitionistic fuzzy                  

H-ideals in Z-algebras. 
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 ABSTRACT :  In this paper, the role of ideals of STBE-algebras is discussed. Using the ideals, 

we construct an STBE-algebra and analyze the completion of the topologies that we have 

constructed. Results analogues to that of topological rings are also derived. 

 

Keywords: STBE-Algebra, Ideals in STBE-Algebras, Directed sets, Quotient topology, Inverse 

system. 

 

1. INTRODUCTION: 

 To compare set theory with the logical systems, Y.Imai and K.Iseki introduced a new 

classes of algebras, called BCK-algebras and BCH-algebras. Many authors investigated these 

algebras. In [2], H.A.Kim and Y.H. Kim introduced the notion of BE-algebras, which is the 

generalization of BCK-algebras. In [7], Jansi M and Thiruveni V introduced the notion of ideals 

in TSBF-algebras. In [5], Thiruveni V, Lakshmi kumara P and Latha K.B studied separation 

axioms on S-Topological BE-algebras. In this paper, we discuss the role of ideals of STBE-

algebras (S-Topological BE-algebras) and we construct STBE-algebras using ideals. 

 

2. PRELIMINARIES: 

Definition 2.1 [2] A BE-algebra is an algebra (X,*,1) of type (2,0) ( that is, a non-empty set X 

with a binary operation * and a constant 1) satisfying the following conditions 

1. 𝑥 ∗ 𝑥 = 1 

2. 𝑥 ∗ 1 = 1  
3. 1 ∗ 𝑥 = 𝑥  
4. 𝑥 ∗ (𝑦 ∗ 𝑧) = 𝑦 ∗ (𝑥 ∗ 𝑧), ∀ 𝑥, 𝑦 , 𝑧 ∈ 𝑋. 

Definition 2.2 [2] A BE-algebra (X,*,1) is called a commutative BE-algebra if it satisfies the 

identity(𝑥 ∗ 𝑦) ∗ 𝑦 = (𝑦 ∗ 𝑥) ∗ 𝑥 , ∀ 𝑥, 𝑦 ∈ 𝑋.  
Theorem 2.3 [2] If X is a commutative BE-algebra then 𝑥 ∗ 𝑦 = 1 𝑜𝑟 𝑦 ∗ 𝑥 = 1,  for all distinct  𝑥, 𝑦 ∈ 𝑋. 
Definition 2.4 [3] A subset A of a topological space is said to be semi-open if  ⊆  𝐼𝑛𝑡 𝐴̅̅ ̅̅ ̅̅ ̅ . 

Definition 2.5 [3] The complement of a semi-open set is called semi-closed. 

Definition 2.6 [3] The semi-closure of a subset A of a topological space is the intersection of 

all semi-closed set containing A. It is denoted by �̅�𝑆. 

Definition 2.7 [3] A subset A of a topological space is said to be regular open if = 𝐼𝑛𝑡 𝐴̅̅ ̅̅ ̅̅ ̅ .  

mailto:malathyselvaraj77@gmail.com
mailto:thiriveni2009@gmail.com
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Definition 2.8 [5] A BE-algebra (𝑋,∗ ,1) equipped with a topology 𝜏𝑆 is called S-topological 

BE-algebra (STBE-algebra) is the function 𝑓: 𝑋 × 𝑋 → 𝑋  defined by, 𝑓(𝑥, 𝑦) = 𝑥 ∗ 𝑦 has the 

property that for each open set O containing 𝑥 ∗ 𝑦, there exists a open set U containing x and a 

semi-open set V containing y such that, 𝑈 ∗ 𝑉 ⊆ 𝑂, for all 𝑥, 𝑦 ∈ 𝑋. 
Definition 2.9 [6 ] Let (𝑋,∗, 𝜏𝑆) be a STBE-algebra.  A non-empty subset 𝐴 ⊆ 𝑋   is called an 

ideal of X if 

1) 1 ∈ 𝐴, 
2)  ∀𝑦 ∈ 𝑋 and ∀𝑥 ∈ 𝐴, if 𝑥 ∗ 𝑦 ∈ 𝐴, then 𝑦 ∈ 𝐴. 

Definition 2.10 [8] Let S be a partially ordered set. S is called a directed set if for 𝑖, 𝑗 ∈ 𝑆, ∃ 𝑘 ∈𝑆, such that 𝑖 ≤ 𝑘 and 𝑗 ≤ 𝑘. 
Definition 2.11 [8] Let 𝐼 ≠ 𝜑 be a subset of a BE-algebra X. Define a binary relation ≡(𝑚𝑜𝑑 𝐼) as follows: 𝑥 ≡ 𝑦 ( 𝑚𝑜𝑑 𝐼) if 𝑥 ∗ 𝑦 ∈ 𝐼 and 𝑦 ∗ 𝑥 ∈ 𝐼. The set {𝑏 ∈ 𝑋/𝑏 ≡ 𝑎 𝑚𝑜𝑑 𝐼} is denoted by [𝑎]𝐼 .   
 

3. ROLE OF IDEALS IN BE-ALGEBRAS: 
Definition 2.1 Let (𝑋,∗ ,1) be a BE-algebra and S be a directed set. Define the family of 

ideals of X as ℱ = {𝐼𝑘/𝑘 ∈ 𝑆} such that 𝐼𝑘 ⊃ 𝐼𝑘, 𝑖𝑓 𝑖 < 𝑗. ---------------- (1) 

Remark 2.2: For 𝑎 ∈ 𝑋, 𝑘 ∈ 𝑆, define 𝑈(𝑎, 𝑘) = {𝑥 ∈ 𝑋/𝑥 ≡ 𝑎(𝑚𝑜𝑑 𝐼𝐾)}. 
Then 𝜏𝑘 = {𝑈(𝑎, 𝑘)/𝑘 ∈ 𝑆} ∪ 𝜑 is a topology on X. Also {𝐼𝑘/𝑘 ∈ 𝑆} is a topology on X. 

Remark 2.3: 1. Fix 𝑎 ∈ 𝑋 and 𝑘 ∈ 𝑆.  
Then we have 𝑈(𝑎, 𝑘) = 𝑋 −∪ {𝑈(𝑎, 𝑘)/ 𝑥 ≢ 𝑎 𝑚𝑜𝑑 𝐼𝑘}.  So, 𝑈(𝑎, 𝑘) is both open and 

closed. 

Theorem 2.4 Let (𝑋,∗ ,1) be a STBE-algebra. Suppose that {1} is closed (open). Then {a} is 

closed (open) for all 𝑎 ∈ 𝑋. 
Proof: Let (𝑋,∗ ,1) be a STBE-algebra. Then 𝑓: 𝑋𝑥𝑋 → 𝑋 be the continuous map defined by 𝑓(𝑎, 𝑏) = 𝑎 ∗ 𝑏.  
Now, we define a map 𝑔: 𝑋𝑥𝑋𝑥𝑋 ⇢ 𝑋𝑥𝑋  by 𝑔(𝑎, 𝑏, 𝑐) = (𝑎 ∗ 𝑏, 𝑏 ∗ 𝑐). 
As 𝑓  is continuous, 𝑔 is continuous. 

Suppose that {1} is closed. Then {1,1} is closed in 𝑋𝑥𝑋. 
Fix 𝑎 ∈ 𝑋. Define a map  ℎ: 𝑋 ⇢ 𝑋𝑥𝑋  by ℎ(𝑏) = 𝑔(𝑎, 𝑏, 𝑎) = (𝑎 ∗ 𝑏, 𝑏 ∗ 𝑎). Then ℎ is the 

restriction of 𝑔 to {𝑎}𝑥𝑋𝑥{𝑎}. So, ℎ is continuous. 

Now, ℎ−1 (1,1) = {𝑏/𝑎 ∗ 𝑏 = 1 𝑎𝑛𝑑 𝑏 ∗ 𝑎 = 1} = {𝑎}  ⇒ {𝑎} is closed (open) as {1} is 

closed (open). 

Now, we construct the inverse system. 

 The quotient topology 𝑋 𝐼𝑘⁄  on each 𝐼𝑘 is discrete. If 𝑖 < 𝑗, there is a natural homomorphism 𝜑𝑖𝑗 : 𝑋 𝐼𝑖⁄ → 𝑋 𝐼𝑗⁄  . So, we can construct the inverse system {𝑋 𝐼𝑖  ⁄ , 𝜑𝑖𝑗}. The inverse limit is lim← 𝑋 𝐼𝑖 ⁄ =  �̂�. Then �̂� is the completion of X. The following lemma is obvious. 

Lemma 2.5 𝜓 ∶ 𝑋 → �̂� is continuous and 𝜓 (𝑋) is dense in �̂�. 
Remark 2.6 Let 𝜋𝑖: �̂�  →  𝑋 𝐼𝑖⁄ . Then 𝜋𝑖 is a natural projection. Let 𝑋∗ = ker 𝜋𝑖 
Then {𝑋𝑖∗/𝑖 ∈ 𝑆} is a family of ideals of 𝑋∗ such that if 𝑖 < 𝑗, then 𝑋𝑗∗  ⊂  𝑋𝑖∗  
Now, for each 𝑖 ∈ 𝑆 and each {[𝑎𝑘]/𝑘 ∈ 𝑆} ∈ �̂�.  
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Let ∪ ({[𝑎𝑘]}𝑘∈𝑆 , 𝑖) = {{[𝑏𝑘]}𝑘∈𝑆 ∈ �̂� /{[𝑏𝑘]}𝑘∈𝑆 ≡ {[𝑎𝑘]}𝑘∈𝑆 𝑚𝑜𝑑  𝑋𝑖∗ . 

Then∪ ({[𝑎𝑘]}𝑘∈𝑆 , 𝑖) =  ∏{𝑈𝑘/𝑘 ∈ 𝑆}, where 𝑈𝑘 = 𝜋𝑘(𝑋)̂ 𝑖𝑓 𝑘 ≠ 𝑖 and 𝑈𝑘 is the singleton [𝑎𝑖].  Hence ∪ ({[𝑎𝑘]}𝑘∈𝑆 , 𝑖) is open. So, we get a topology induced by the family of ideals {𝑋𝑖∗/𝑖 ∈ 𝑆}. 
Also we see that 𝜋𝑖(𝜓(𝑋)) =  𝑋 𝐼𝑖⁄  ⇒ 𝜋𝑖 is onto.  

Hence 𝑋 𝐼𝑖⁄ ≅  �̂� ker 𝜋𝑖⁄ = �̂� 𝑋𝑖∗⁄ .  So, the completion of �̂� is �̂�. 
Consider two directed sets 𝑆1 and 𝑆1. Then the sets of ideals ℱ1 = {𝐼𝑖 /𝑖 ∈ 𝑆1} and ℱ2 ={𝐽𝑖 /𝑖 ∈ 𝑆2} both induce the same topology on X if and only if for each 𝑈(𝑎, 𝑖) (𝑖 ∈ 𝑆1), there 

exists 𝑘 ∈ 𝑆2 such that  𝑈(𝑎, 𝑘) ⊂ 𝑈(𝑎, 𝑖) and for each 𝑈(𝑎, 𝑘) (𝑘 ∈ 𝑆2 there exist 𝑖 ∈ 𝑆1 

such that 𝑈(𝑎, 𝑖) ⊂ 𝑈(𝑎, 𝑘). If this is the case, then lim⟵ 𝑋 𝐼𝑖⁄  ⟶ lim⟵ 𝑋 𝐼𝑖⁄  is an isomorphism. 

Now, the following lemma is obvious. 

Lemma 2.7 𝜓 ∶ 𝑋 → �̂� is injective if and only is ∩ {𝐼𝑖/𝑖 ∈ 𝑆} = {0}. That is if and only if X 

is T1. 

Theorem 2.8 If 𝐴 ⊂ 𝑋, then �̃� = ⋂ ⋃ 𝑈(𝑥, 𝑖),𝑥∈𝐴𝑖∈𝑆  where �̃� is the topological closure of A. 

Proof: Let 𝐴 ⊂ 𝑋. We have 𝑋 −∪ {𝑈(𝑥, 𝑖)/𝑥 ∈ 𝐴}  =∪ {𝑈(𝑦, 𝑖)/ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐴, 𝑦 ≢ 𝑥} 
Since ∪ {𝑈(𝑦, 𝑖)/ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐴, 𝑦 ≢ 𝑥} is open, we have 𝑋 −∪ {𝑈(𝑥, 𝑖)/𝑥 ∈ 𝐴} is open. ⇒∪ {𝑈(𝑥, 𝑖)/𝑥 ∈ 𝐴} is closed and it contains A. ⇒ �̃� = ⋂ ⋃ 𝑈(𝑥, 𝑖),𝑥∈𝐴𝑖∈𝑆  

Theorem 2.9 If I is an open (closed) ideal, then for each 𝑥 ∈ 𝑋, {𝑦 ∈ 𝑋/𝑦 ≡ 𝑥 𝑚𝑜𝑑 𝐼} is 

open (closed). 

Proof: Let 𝑥 ∈ 𝑋. Define a left map 𝐿𝑥: 𝑋 → 𝑋, by 𝐿𝑥(𝑦) = 𝑥 ∗ 𝑦 and a right map 𝑅𝑥: 𝑋 → 𝑋, 
by 𝑅𝑥(𝑦) = 𝑦 ∗ 𝑥.Then 𝐿𝑥 and 𝑅𝑥 are continuous. 

Assume that I is an open ideal. ⇒ 𝐿𝑥−1(𝐼) and 𝑅𝑥−1(𝐼) are open ⇒ 𝐿𝑥−1(𝐼) ∩ 𝑅𝑥−1(𝐼) is open. 

But 𝐿𝑥−1(𝐼) ∩ 𝑅𝑥−1(𝐼) = {𝑦 ∈ 𝑋/𝑥 ∗ 𝑦, 𝑦 ∗ 𝑥 ∈ 𝐼} = {𝑦 ∈ 𝑋/𝑦 ≡ 𝑥 𝑚𝑜𝑑 𝐼}. 
Hence, {𝑦 ∈ 𝑋/𝑦 ≡ 𝑥 𝑚𝑜𝑑 𝐼} is open. 

Similarly, we can prove that if I is closed, then {𝑦 ∈ 𝑋/𝑦 ≡ 𝑥 𝑚𝑜𝑑 𝐼} is closed. 

Theorem 2.10 Every open ideal in X is closed. 

Proof: Let I be an open ideal of X. From theorem 2.9, for each 𝑥 ∈ 𝑋, {𝑦 ∈ 𝑋/𝑦 ≡ 𝑥 𝑚𝑜𝑑 𝐼} 
is open. But I is the complement of the union of all other congruence classes. 

That is = {∪ {𝑦 ∈ 𝑋/𝑦 ≢ 𝑥 𝑚𝑜𝑑 𝐼}}𝐶 . 

Since, ∪ {𝑦 ∈ 𝑋/𝑦 ≢ 𝑥 𝑚𝑜𝑑 𝐼} is open, its complement I is closed. 
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ABSTRACT :  A more natural and necessary generalization of the intuitionistic fuzzy theory 

is developed and introduce the concept of k-intuitionistic fuzzy ideals. In this paper we  prove 

many theorems in the concept of ideals. 

 

1. INTRODUCTION: 

 In the current century fuzzy theory has its vast applications in almost all fields, which 

are related to Mathematics technically. Based on the concept of fuzzy theory, intuitionistic 

fuzzy theory was develop, but the theory in some way didn’t emerged as much as fuzzy theory. 
In most natural situations like buying a new car, judging about a persons various personalities, 

both fuzzy theory and intuitionistic fuzzy theory were insufficient. So, we are in need to 

develop a new structure to annihilate the insufficiency. 

 Fuzzy subsets were developed by Zadeh [7] as functions from a set X to the closed 

interval [0,1] ⊆ ℝ to study the uncertainties; it study the gradual membership of an object in a 

set. In the name Zadeh, fuzzy theory has emerged as an important notion in the field of 

Mathematics. Many of its branches, like fuzzy group theory, fuzzy topology, fuzzy 

metricspaces were developed and studied by many others. Joseph G. Brown, A. Rosenfeld, 

W.M. Wu, Rajeshkumar, [4] are some, who studied fuzzy theory in the context of Algebra. K. 

T. Atanassov [1] developed the concept intuitionistic fuzzy subsets in 1983. 

 

Basic  definitions:  

Definition: 1.1 

 Let 𝑆 be any nonempty set. A mapping 𝜇: 𝑆 → [0,1]  is called a fuzzy subset of 𝑆. 

Definition: 1.2 

 Let 𝜇 be any fuzzy subset of a set 𝑆 and let 𝑡 ∈ [0,1]. The set 𝜇𝑡 = {𝑥𝜖𝑆/𝜇(𝑥) ≥ 𝑡} is 

called a level subset of 𝜇. 

Definition: 1.3 

 Let 𝑓 be any function from a set 𝑆 to a set 𝑇. Let 𝜇 be any fuzzy subset of 𝑆 and let 𝜎 

be any fuzzy subset of 𝑇. Then the image of 𝜇 under 𝑓  denoted by 𝑓(𝜇), is a fuzzy subset of 𝑇 denoted by: (𝑓(𝜇))(𝑦) = { sup𝑥𝜖𝑓−1(𝑥) 𝜇(𝑥)            𝑖𝑓 𝑓−1(𝑥) ≠ ∅ 0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

where 𝑦 ∈ 𝑇. 

The inverse image of 𝜎 under 𝑓, symbolized as 𝑓−1(𝜎), is a fuzzy subset of 𝑆, defined by 𝑓−1(𝜎)(𝑥) = 𝜎(𝑓(𝑥)) for all 𝑥𝜖𝑆. 
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Definition :1.4 

 A fuzzy subset 𝜇 of a ring ℝ is called a fuzzy subring of ℝ, if 

                                       (𝑖) 𝜇(𝑥 − 𝑦) ≥ 𝜇(𝑥) ∧ 𝜇(𝑦) 

                                       (𝑖𝑖) 𝜇(𝑥𝑦) ≥ 𝜇(𝑥) ∧ 𝜇(𝑦)    for all 𝑥, 𝑦𝜖ℝ 

 Definition : 1.5 

 A fuzzy subset 𝜇 of a ring ℝ is called a fuzzy ideal of ℝ, if 

                                       (𝑖) 𝜇(𝑥 − 𝑦) ≥ 𝜇(𝑥) ∧ 𝜇(𝑦) 

                                       (𝑖𝑖) 𝜇(𝑥𝑦) ≥ 𝜇(𝑥) ∨ 𝜇(𝑦)    for all 𝑥, 𝑦𝜖ℝ 

Definition: 1.6 

 Let 𝑋 be a fixed non-empty set. An intuitionistic fuzzy set 𝐴 in 𝑋 is an object having 

the form 𝐴∗ = {〈𝑥, 𝜇𝐴(𝑥),𝜗𝐴(𝑥)〉/𝑥𝜖𝑋}, where 𝜇𝐴: 𝑋 → [0,1] and 𝜗𝐴: 𝑋 → [0,1] define the 

degree of membership and degree of non-membership of the element 𝑥𝜖𝑋 to the set 𝐴, which 

is a subset of 𝑋, respectively, and for every 𝑥𝜖𝑋, we have 0 ≤ 𝜇𝐴(𝑥) + 𝜗𝐴(𝑥) ≤ 1 

Definition: 1.7 

 For any two intuitionistic fuzzy subsets 𝐴 and 𝐵 of a set 𝑋, the following properties 

hold: 

 𝐴 ⊂ 𝐵 𝑖𝑓 𝜇𝐴(𝑥) ≤ 𝜇𝐵(𝑥) and 𝜗𝐴(𝑥) ≥ 𝜗𝐵(𝑥), for all 𝑥𝜖𝑋. 

 𝐴 = 𝐵 𝑖𝑓𝐴 ⊂ 𝐵 and 𝐵 ⊂ 𝐴 

 �̅� = {〈𝑥, 𝜇𝐴(𝑥),𝜗𝐴(𝑥)〉}, 𝑥𝜖𝑋 

  𝐴 ∩ 𝐵 = {〈𝑥,  min {𝜇𝐴(𝑥),𝜇𝐵(𝑥)}, max {𝜗𝐴(𝑥), 𝜗𝐵(𝑥)}〉}, 𝑥𝜖𝑋 

 𝐴 ∪ 𝐵 = {〈𝑥,  max {𝜇𝐴(𝑥),𝜇𝐵(𝑥)}, min {𝜗𝐴(𝑥), 𝜗𝐵(𝑥)}〉}, 𝑥𝜖𝑋 

Note:  In what follows  in this paper, we define an intuitionistic fuzzy set 𝐴 of set 𝑋 as a pair 

(𝜇𝐴, 𝜗𝐴), for simplicity. 

 

2  k-INTUITIONISTIC FUZZY STRUCTURES: 

 In our trending world, fuzzy theory has its wide applications in almost all fields, for 

example, signal processing, telecommunication, aerospace, automotive, robotics, chemical 

industry, electronics, medical, mining and metal processing. Even though fuzzy logic has 

emerged as unavoidable branch of mathematics, the theory is insufficient in some sense in 

many real life situations. For example, while buying a plot in a city, as a buyer one man will 

have his own desire and expectation about his plot. That is, he may expect, the plot should be 

around 3000sqft, the ground water level should be high; bus stand, schools, hospitals and 

colleges should be at minimum distance; there should be a good road facility, etc., It is not 

quite possible practically, to fulfill all his expectations. So, if a buyer say I will buy a plot, only 

if all my expectations are fulfilled means; he will never buy a plot in his lifetime. So, he should 

relax his own level of expectations; matter of acceptance and opposition level of his 

expectations, plays a vital role here. Thus we need a structure, to discuss about the level of 

acceptance and the level of opposition, of a finite set of properties of an object. 

  Definition : 2.1 

 Let 𝑋 be a non-empty set. Let 𝑘 be a positive integer. Then a 𝑘-intuitionistic fuzzy 

subset of a set 𝑋 is an ordered 2𝑘 tuple (𝜇1, 𝜇2, … 𝜇𝑘 , 𝜗1, 𝜗2, … 𝜗𝑘) of functions from 𝑋to [0,1] satisfying  𝜇𝑖(𝑥) + 𝜗𝑖(𝑥) ≤ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,2, … , 𝑘 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋. 
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We denote a 𝑘- intuitionistic fuzzy subset 𝐴 as an ordered 2𝑘 tuple (𝜇𝐴1 , 𝜇𝐴2 , … 𝜇𝐴𝑘 , 𝜗𝐴1 , 𝜗𝐴2 , … 𝜗𝐴𝑘) throughout the paper. 

Definition: 2.2 

 For any two 𝑘-intuitionistic fuzzy subsets 𝐴 and 𝐵 of a set 𝑋, we define 

 𝐴 ⊆ 𝐵 𝑖𝑓 𝜇𝐴𝑖(𝑥) ≤ 𝜇𝐵𝑖(𝑥) and 𝜗𝐴𝑖(𝑥) ≥ 𝜗𝐵𝑖(𝑥), for all 𝑥𝜖𝑋 and 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,2, … , 𝑘 

 𝐴 = 𝐵 𝑖𝑓𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴 

 �̅�(𝑥) = (𝜗𝐴1(𝑥), 𝜗𝐴2(𝑥), …𝜗𝐴𝑘(𝑥), 𝜇𝐴1(𝑥), 𝜇𝐴2(𝑥), …𝜇𝐴𝑘(𝑥)), 𝑥𝜖𝑋 

  (𝐴 ∩ 𝐵)(𝑥) = ((𝜇𝐴1(𝑥) ∧ 𝜇𝐵1(𝑥)),… , (𝜇𝐴𝑘(𝑥) ∧ 𝜇𝐵𝑘(𝑥)),                                       (𝜗𝐴1(𝑥) ∨ 𝜗𝐵1(𝑥)),… , (𝜗𝐴𝑘(𝑥) ∨ 𝜗𝐵𝑘(𝑥)), 𝑥𝜖𝑋 

 (𝐴 ∪ 𝐵)(𝑥) = ((𝜇𝐴1(𝑥) ∧ 𝜇𝐵1(𝑥)),… , (𝜇𝐴𝑘(𝑥) ∨ 𝜇𝐵𝑘(𝑥)),                                       (𝜗𝐴1(𝑥) ∧ 𝜗𝐵1(𝑥)),… , (𝜗𝐴𝑘(𝑥) ∧ 𝜗𝐵𝑘(𝑥)), 𝑥𝜖𝑋 

Definition: 2.3 

 Let 𝑓 be a function from 𝑋 to 𝑌 and let 𝐴 = (𝜇𝐴1 , 𝜇𝐴2 , … 𝜇𝐴𝑘 , 𝜗𝐴1 , 𝜗𝐴2 , … 𝜗𝐴𝑘) be a 𝑘 − intuitionistic fuzzy subset in 𝑋. The image of 𝐴, written as 𝑓(𝐴) is a 𝑘 − intuitionistic in 𝑌 is 

given by, 𝑓(𝐴) = (𝜇𝑓(𝐴)1 , 𝜇𝑓(𝐴)2 , … 𝜇𝑓(𝐴)𝑘 , 𝜗𝑓(𝐴)1 , 𝜗𝑓(𝐴)2 , … 𝜗𝑓(𝐴)𝑘) 

where,  𝜇𝑓(𝐴)𝑖(𝑦) = { sup𝑥𝜖𝑓−1(𝑥){𝜇𝐴𝑖(𝑥)}            𝑖𝑓 𝑓−1(𝑦) ≠ ∅ 0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                             

 

 and 𝜗𝑓(𝐴)𝑖(𝑦) = { inf𝑥𝜖𝑓−1(𝑥){𝜗𝐴𝑖(𝑥) }           𝑖𝑓 𝑓−1(𝑦) ≠ ∅ 1                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

Definition: 2.4 

 Let 𝑓 be a function from 𝑋 to 𝑌 and let 𝐴 = (𝜇𝐴1 , 𝜇𝐴2 , … 𝜇𝐴𝑘 , 𝜗𝐴1 , 𝜗𝐴2 , … 𝜗𝐴𝑘) be a 𝑘 − intuitionistic fuzzy subset in 𝑌. Then the inverse of 𝐴 is written as 𝑓−1(𝐴) is a 𝑘 − intuitionistic fuzzy subset in 𝑋 given by,  𝑓−1(𝐴) = (𝜇𝑓−1(𝐴)1 , 𝜇𝑓−1(𝐴)2 , … 𝜇𝑓−1(𝐴)𝑘 , 𝜗𝑓−1(𝐴)1 , 𝜗𝑓−1(𝐴)2 , … 𝜗𝑓−1(𝐴)𝑘) 

where 𝜇𝑓−1(𝐴)𝑖(𝑥) = 𝜇𝐴𝑖(𝑓(𝑥)) and 𝜗𝑓−1(𝐴)𝑖(𝑥) = 𝜗𝐴𝑖(𝑓(𝑥)), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,2, … , 𝑘 𝑎𝑛𝑑 for 

all 𝑥 ∈ 𝑋. 

 

3  k-INTUIOTIONISTIC FUZZY IDEALS : 

Definition: 3.1 

 Let ℝ be a ring. A 𝑘 − intuitionistic fuzzy subset 𝐴 of ℝ is said to be a 𝑘 − 

intuitionistic fuzzy subring of ℝ if it satisfies the following conditions: 

(i) 𝜇𝐴𝑖(𝑥 − 𝑦) ≥ 𝜇𝐴𝑖(𝑥) ∧ 𝜇𝐴𝑖(𝑦) 

(ii) 𝜇𝐴𝑖(𝑥𝑦) ≥ 𝜇𝐴𝑖(𝑥) ∧ 𝜇𝐴𝑖(𝑦) 

(iii) 𝜗𝐴𝑖(𝑥 − 𝑦) ≤ 𝜗𝐴𝑖(𝑥) ∨ 𝜗𝐴𝑖(𝑦) 

(iv) 𝜗𝐴𝑖(𝑥𝑦) ≤ 𝜗𝐴𝑖(𝑥) ∨ 𝜗𝐴𝑖(𝑦) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,2, … , 𝑘 𝑎𝑛𝑑 for all 𝑥 ∈ 𝑋 
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Definition : 3.2 

 Let ℝ be a ring. A 𝑘 − intuitionistic fuzzy subset 𝐴 of ℝ is said to be a 𝑘 − 

intuitionistic fuzzy ideal of ℝ if it satisfies the following conditions; 

(i) 𝜇𝐴𝑖(𝑥 − 𝑦) ≥ 𝜇𝐴𝑖(𝑥) ∧ 𝜇𝐴𝑖(𝑦) 

(ii) 𝜇𝐴𝑖(𝑥𝑦) ≥ 𝜇𝐴𝑖(𝑥) ∨ 𝜇𝐴𝑖(𝑦) 

(iii) 𝜗𝐴𝑖(𝑥 − 𝑦) ≤ 𝜗𝐴𝑖(𝑥) ∨ 𝜗𝐴𝑖(𝑦) 

(iv) 𝜗𝐴𝑖(𝑥𝑦) ≤ 𝜗𝐴𝑖(𝑥) ∧ 𝜗𝐴𝑖(𝑦) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,2, … , 𝑘 𝑎𝑛𝑑 for all 𝑥 ∈ 𝑋 

Example: 3.3 

 Let ℝ be a ring of real numbers under the usual operations of addition and 

multiplication. Then the 𝑘 − intuitionistic fuzzy subset 𝐴 of ℝ defined by 𝜇𝐴𝑖(𝑥) = {0        𝑖𝑓 𝑥 𝑖𝑠 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙0.8               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝜗𝐴𝑖(𝑥) = {1        𝑖𝑓 𝑥 𝑖𝑠 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙0.1               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝐴 is a 𝑘 − intuitionistic fuzzy ideal of ℝ. 

Theorem : 3.4 

 Let ℝ be a ring. Let 𝐴 and 𝐵 be any two 𝑘 − intuitionistic fuzzy ideal. Then 𝐴 ∩ 𝐵 is 

also a 𝑘 − intuitionistic fuzzy ideal.   

Proof: 

Let 𝐴 = (𝜇𝐴1 , 𝜇𝐴2 , … 𝜇𝐴𝑘 , 𝜗𝐴1 , 𝜗𝐴2 , … 𝜗𝐴𝑘) 

And  𝐵 = (𝜇𝐵1 , 𝜇𝐵2 , … 𝜇𝐵𝑘 , 𝜗𝐵1 , 𝜗𝐵2 , … 𝜗𝐵𝑘) be two 𝑘 − intuitionistic fuzzy ideal. 

Then we have (𝐴 ∩ 𝐵)(𝑥) = ((𝜇𝐴1(𝑥) ∧ 𝜇𝐵1(𝑥)),… , (𝜇𝐴𝑘(𝑥) ∧ 𝜇𝐵𝑘(𝑥)),                                       (𝜗𝐴1(𝑥) ∨ 𝜗𝐵1(𝑥)),… , (𝜗𝐴𝑘(𝑥) ∨ 𝜗𝐵𝑘(𝑥)) for all 𝑥 ∈ 𝑋. 

We take (𝜇𝐴𝑖 ∧ 𝜇𝐵𝑖) = 𝛾𝑖 and (𝜗𝐴1 ∨ 𝜗𝐵1) = 𝛾𝑖′ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,2, … , 𝑘 

Then, 𝐴 ∩ 𝐵 = (𝛾1, 𝛾2, … , 𝛾𝑘, 𝛾1′, 𝛾2′, … , 𝛾𝑘′)  
Now, 𝛾𝑖(𝑥 − 𝑦) = (𝜇𝐴𝑖(𝑥 − 𝑦) ∧ 𝜇𝐵𝑖(𝑥 − 𝑦)) 
                           ≥ (𝜇𝐴𝑖(𝑥)  ∧ 𝜇𝐴𝑖(𝑦)) ∧ (𝜇𝐵𝑖(𝑥)  ∧ 𝜇𝐵𝑖(𝑦))   

                            = (𝜇𝐴𝑖(𝑥)  ∧ 𝜇𝐵𝑖(𝑥)) ∧ (𝜇𝐴𝑖(𝑦) ∧ 𝜇𝐵𝑖(𝑦))   

                            = [𝛾𝑖(𝑥) ∧ 𝛾𝑖(𝑦)] 
Therefore, 𝛾𝑖(𝑥 − 𝑦) ≥ [𝛾𝑖(𝑥) ∧ 𝛾𝑖(𝑦)] 
 Now, 𝛾𝑖(𝑥𝑦) = (𝜇𝐴𝑖(𝑥𝑦) ∧ 𝜇𝐵𝑖(𝑥𝑦)) 

                       ≥ (𝜇𝐴𝑖(𝑥)  ∨ 𝜇𝐴𝑖(𝑦)) ∧ (𝜇𝐵𝑖(𝑥)  ∨ 𝜇𝐵𝑖(𝑦))   

                       = (𝜇𝐴𝑖(𝑥)  ∧ 𝜇𝐵𝑖(𝑥)) ∨ (𝜇𝐴𝑖(𝑦) ∧ 𝜇𝐵𝑖(𝑦))   

                       = [𝛾𝑖(𝑥) ∨ 𝛾𝑖(𝑦)] 
Therefore, 𝛾𝑖(𝑥𝑦) ≥ [𝛾𝑖(𝑥) ∨ 𝛾𝑖(𝑦)] 
Similarly, we can prove (iii) and (iv)  of the definition (13). 

Theorem : 3.5 

 Let ℝ and ℝ′ be two rings and 𝑓:ℝ → ℝ′ be an onto homomorphism. Let 𝐴 be a 𝑘 − 

intuitionistic fuzzy ideal of ℝ. Then 𝑓(𝐴) is a 𝑘 − intuitionistic fuzzy ideals of ℝ′. 
Proof: Let 𝐴 = (𝜇𝐴1 , 𝜇𝐴2 , … 𝜇𝐴𝑘 , 𝜗𝐴1 , 𝜗𝐴2 , … 𝜗𝐴𝑘) be a 𝑘 − intuitionistic fuzzy ideal of ℝ. 

Claim: 𝑓(𝐴) is a 𝑘 − intuitionistic fuzzy ideals of ℝ′ 
Let 𝑥, 𝑦 ∈  ℝ′,  then we have 
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𝜇𝑓(𝐴)𝑖(𝑥) = { sup𝑢𝜖𝑓−1(𝑥){𝜇𝐴𝑖(𝑢)}            𝑖𝑓 𝑓−1(𝑥) ≠ ∅ 0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

𝜗𝑓(𝐴)𝑖(𝑥) = { inf𝑢𝜖𝑓−1(𝑥){𝜗𝐴𝑖(𝑢) }           𝑖𝑓 𝑓−1(𝑥) ≠ ∅ 1                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

𝜇𝑓(𝐴)𝑖(𝑦) = { sup𝑣𝜖𝑓−1(𝑦){𝜇𝐴𝑖(𝑣)}            𝑖𝑓 𝑓−1(𝑦) ≠ ∅ 0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

and 𝜗𝑓(𝐴)𝑖(𝑦) = { inf𝑣𝜖𝑓−1(𝑦){𝜗𝐴𝑖(𝑣) }           𝑖𝑓 𝑓−1(𝑦) ≠ ∅ 1                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

Now we prove that, 

If 𝑢 ∈ 𝑓−1(𝑥) and 𝑣 ∈ 𝑓−1(𝑦), then 𝑢 − 𝑣 ∈ 𝑓−1(𝑥 − 𝑦) and 𝑢𝑣 ∈ 𝑓−1(𝑥𝑦) 

For, 

Let 𝑢 ∈ 𝑓−1(𝑥) and 𝑣 ∈ 𝑓−1(𝑦) then 𝑓(𝑢) = 𝑥 and 𝑓(𝑣) = 𝑦 

                 ⟹ 𝑓(𝑢) − 𝑓(𝑣) = 𝑓(𝑢 − 𝑣) = 𝑥 − 𝑦 

                 ⟹ 𝑢 − 𝑣 ∈ 𝑓−1(𝑥 − 𝑦) 

Similarly,  𝑢𝑣 ∈ 𝑓−1(𝑥𝑦). 𝜇𝑓(𝐴)𝑖(𝑥 − 𝑦) = { sup𝑧𝜖𝑓−1(𝑥 − 𝑦){𝜇𝐴𝑖(𝑧)}            𝑖𝑓 𝑓−1(𝑥 − 𝑦) ≠ ∅ 0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

and  𝜗𝑓(𝐴)𝑖(𝑥 − 𝑦) = { inf𝑧𝜖𝑓−1(𝑥 − 𝑦){𝜗𝐴𝑖(𝑧)}           𝑖𝑓 𝑓−1(𝑥 − 𝑦) ≠ ∅ 1                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

Consider 𝜇𝑓(𝐴)𝑖(𝑥 − 𝑦) = sup𝑧𝜖𝑓−1(𝑥 − 𝑦) 𝜇𝐴𝑖(𝑧) 
                                       =

sup𝑢 − 𝑣𝜖𝑓−1(𝑥 − 𝑦) 𝜇𝐴𝑖(𝑢 − 𝑣) 

                                       ≥ sup𝑢 − 𝑣𝜖𝑓−1(𝑥 − 𝑦)( 𝜇𝐴𝑖(𝑢) ∧ 𝜇𝐴𝑖(𝑣)) 

                                       ≥ sup𝑢𝜖𝑓−1(𝑥)( 𝜇𝐴𝑖(𝑢))  ∧ sup𝑣𝜖𝑓−1(𝑦)(𝜇𝐴𝑖(𝑣)) 

                                       ≥ 𝜇𝑓(𝐴)𝑖(𝑥) ∧ 𝜇𝑓(𝐴)𝑖(𝑦) 

Hence 𝜇𝑓(𝐴)𝑖(𝑥 − 𝑦) ≥ 𝜇𝑓(𝐴)𝑖(𝑥) ∧ 𝜇𝑓(𝐴)𝑖(𝑦) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 and for all 𝑥, 𝑦 ∈  ℝ′. 
Similarly we can prove the conditions (ii), (iii) and (iv) of definition (13). 

Hence 𝑓(𝐴) is a 𝑘 − intuitionistic fuzzy ideal of ℝ′. 
Theorem:3.6 Let ℝ and ℝ′ be two rings and 𝑓:ℝ → ℝ′ be an onto homomorphism. Let 𝐴′ be 

a 𝑘 − intuitionistic fuzzy ideal of ℝ′. Then 𝑓−1(𝐴′) is a 𝑘 − intuitionistic fuzzy ideals of ℝ. 

Proof: 

Let  𝐴′ = (𝜇𝐴1′ , 𝜇𝐴2′ , … , 𝜇𝐴𝑘′ , 𝜗𝐴1′ , 𝜗𝐴2′ , … , 𝜗𝐴𝑘′  be a 𝑘 − intuitionistic fuzzy ideal of ℝ′. 
Then 𝑓−1(𝐴′) = (𝜇𝑓−1(𝐴)1′ , 𝜇𝑓−1(𝐴)2′ , … , 𝜇𝑓−1(𝐴)𝑘′ , 𝜗𝑓−1(𝐴)1′ , 𝜗𝑓−1(𝐴)2′ , … , 𝜗𝑓−1(𝐴)𝑘′ where 𝜇𝑓−1(𝐴)𝑖′(𝑥) = 𝜇𝐴𝑖′(𝑓(𝑥)) and 𝜗𝑓−1(𝐴)𝑖′(𝑥) = 𝜗𝐴𝑖′(𝑓(𝑥)) 

Let 𝑥, 𝑦 ∈  ℝ 
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Now, 𝜇𝑓−1(𝐴)𝑖′(𝑥 − 𝑦) = 𝜇𝐴𝑖′𝑓(𝑥 − 𝑦) 

                                     = 𝜇𝐴𝑖′(𝑓(𝑥) − 𝑓(𝑦)) 

                                     ≥ 𝜇𝐴𝑖′(𝑓(𝑥)) ∧ 𝜇𝐴𝑖′(𝑓(𝑦)) 

                                     = 𝜇𝑓−1(𝐴)𝑖′(𝑥) ∧ 𝜇𝑓−1(𝐴)𝑖′(𝑦) 

Hence 𝜇𝑓−1(𝐴)𝑖′(𝑥 − 𝑦) ≥  𝜇𝑓−1(𝐴)𝑖′(𝑥) ∧ 𝜇𝑓−1(𝐴)𝑖′(𝑦) 

Now, 𝜇𝑓−1(𝐴)𝑖′(𝑥𝑦) = 𝜇𝐴𝑖′𝑓(𝑥𝑦) 
                                     = 𝜇𝐴𝑖′(𝑓(𝑥). 𝑓(𝑦)) 

                                     ≥ 𝜇𝐴𝑖′(𝑓(𝑥)) ∨ 𝜇𝐴𝑖′(𝑓(𝑦)) 

                                     = 𝜇𝑓−1(𝐴)𝑖′(𝑥) ∨ 𝜇𝑓−1(𝐴)𝑖′(𝑦) 

Hence 𝜇𝑓−1(𝐴)𝑖′(𝑥𝑦) ≥  𝜇𝑓−1(𝐴)𝑖′(𝑥) ∨ 𝜇𝑓−1(𝐴)𝑖′(𝑦) 

Similarly we can prove 𝜗𝑓−1(𝐴)𝑖′(𝑥 − 𝑦) ≤  𝜗𝑓−1(𝐴)𝑖′(𝑥) ∨ 𝜗𝑓−1(𝐴)𝑖′(𝑦) 

                                       𝜗𝑓−1(𝐴)𝑖′(𝑥𝑦) ≤  𝜗𝑓−1(𝐴)𝑖′(𝑥) ∧ 𝜗𝑓−1(𝐴)𝑖′(𝑦) 

Hence 𝑓−1(𝐴′) is a 𝑘 − intuitionistic fuzzy ideals of ℝ. 
Theorem : 3.7 

 Let ℝ be any ring and 𝐴 be a fuzzy ideal of a ring ℝ and if 𝜇𝐴𝑖(𝑥) < 𝜇𝐴𝑖(𝑦) for some 𝑥, 𝑦 ∈  ℝ. Then 𝜇𝐴𝑖(𝑥 − 𝑦) = 𝜇𝐴𝑖(𝑥) = 𝜇𝐴𝑖(𝑦 − 𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,2, … , 𝑘 

Proof:  

Let 𝐴 = (𝜇𝐴1 , 𝜇𝐴2 , … 𝜇𝐴𝑘 , 𝜗𝐴1 , 𝜗𝐴2 , … 𝜗𝐴𝑘) be a 𝑘 − intuitionistic fuzzy ideal of ℝ. 

Let 𝜇𝐴𝑖(𝑥) < 𝜇𝐴𝑖(𝑦) for some 𝑥, 𝑦 ∈  ℝ 

Claim: 𝜇𝐴𝑖(𝑥 − 𝑦) = 𝜇𝐴𝑖(𝑥) = 𝜇𝐴𝑖(𝑦 − 𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,2, … , 𝑘 

Now 𝜇𝐴𝑖(𝑥 − 𝑦) ≥ 𝜇𝐴𝑖(𝑥) ∧ 𝜇𝐴𝑖(𝑦) 

                            =𝜇𝐴𝑖(𝑥)……… . . (1) 

And consider 𝜇𝐴𝑖(𝑥) = 𝜇𝐴𝑖(𝑥𝑦𝑦−1) 

                                  = 𝜇𝐴𝑖((𝑥𝑦)𝑦−1) 

                                  ≥ [𝜇𝐴𝑖(𝑥𝑦) ∧ 𝜇𝐴𝑖(𝑦−1)] 
                                  ≥ [𝜇𝐴𝑖(𝑥) ∧ 𝜇𝐴𝑖(𝑦)] ∧ 𝜇𝐴𝑖(𝑦−1) 
                                  ≥ 𝜇𝐴𝑖(𝑥) ∧ 𝜇𝐴𝑖(𝑦)] 
                                  = 𝜇𝐴𝑖(𝑥 − 𝑦)……… . . (2) 

From (1) and (2) implies, we get, 𝜇𝐴𝑖(𝑥 − 𝑦) = 𝜇𝐴𝑖(𝑥)………(3) 

Similarly, we can prove, 𝜇𝐴𝑖(𝑥) = 𝜇𝐴𝑖(𝑦 − 𝑥)……… . (4) 

From (3) and (4) implies, we get, 𝜇𝐴𝑖(𝑥 − 𝑦) = 𝜇𝐴𝑖(𝑥) = 𝜇𝐴𝑖(𝑦 − 𝑥) 

Definition: 3.8 

 Let ℝ be a ring and 𝐴 be a 𝑘 −intuitionistic fuzzy ideal of ℝ. Let 𝑡 ∈ [0,1] and 

 𝑡 ≤ 𝜇𝐴𝑖(𝑒) + 𝜗𝐴𝑖(𝑒). The 𝑘 −intuitionistic fuzzy ideal 𝐴𝑡 is called 𝑘 −intuitionistic level 

ideal of 𝐴. 

Theorem: 3.9 

 Let ℝ be a ring. Let 𝐴𝑡 and 𝐴𝑠 are two 𝑘 −intuitionistic level ideals of ℝ are equal if 

and only if there is no 𝑥 in ℝ such that  𝑠 ≤ 𝜇𝐴𝑖(𝑥) + 𝜗𝐴𝑖(𝑥) < 𝑡. 
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Proof: 

Let 𝐴 = (𝜇𝐴1 , 𝜇𝐴2 , … 𝜇𝐴𝑘 , 𝜗𝐴1 , 𝜗𝐴2 , … 𝜗𝐴𝑘) be a 𝑘 − intuitionistic fuzzy ideal of ℝ. 

Let 𝐴𝑡 and 𝐴𝑠 are two 𝑘 −intuitionistic level ideals of ℝ. 

Suppose 𝐴𝑡 = 𝐴𝑠 (𝑠 < 𝑡) 

Claim: There is no 𝑥 in ℝ such that  𝑠 ≤ 𝜇𝐴𝑖(𝑥) + 𝜗𝐴𝑖(𝑥) < 𝑡 

Assume that 𝑥 in ℝ such that  𝑠 ≤ 𝜇𝐴𝑖(𝑥) + 𝜗𝐴𝑖(𝑥) < 𝑡 

                    ⟹ 𝜇𝐴𝑖(𝑥) + 𝜗𝐴𝑖(𝑥) ≥ 𝑠 and 𝜇𝐴𝑖(𝑥) + 𝜗𝐴𝑖(𝑥) < 𝑡 

                    ⟹ 𝑥 ∈ 𝐴𝑠 and 𝑥𝐴𝑡 
                    ⟹ 𝐴𝑠 ≠ 𝐴𝑡 

Which is the contradiction to our assumption 

Therefore there is no 𝑥 in ℝ such that  𝑠 ≤ 𝜇𝐴𝑖(𝑥) + 𝜗𝐴𝑖(𝑥) < 𝑡 

Conversely, 

Suppose that there is no 𝑥 in ℝ such that  𝑠 ≤ 𝜇𝐴𝑖(𝑥) + 𝜗𝐴𝑖(𝑥) < 𝑡 

Claim: 𝐴𝑡 = 𝐴𝑠 

Suppose that 𝐴𝑠 ≠ 𝐴𝑡 
If  𝑠 < 𝑡 then 𝐴𝑡 ⊂ 𝐴𝑠 

For,  

Let 𝑥 ∈ 𝐴𝑡  

         ⟹ 𝜇𝐴𝑖(𝑥) + 𝜗𝐴𝑖(𝑥) ≥ 𝑡 > 𝑠 

         ⟹ 𝜇𝐴𝑖(𝑥) + 𝜗𝐴𝑖(𝑥) > 𝑠 

Then ⟹ 𝑥 ∈ 𝐴𝑠 

         ⟹ 𝐴𝑡 ⊂ 𝐴𝑠 

It is enough to prove that 𝐴𝑡   𝐴𝑠 

                    ⟹ 𝑥 ∈ 𝐴𝑠 and 𝑥𝐴𝑡 
                    ⟹ 𝜇𝐴𝑖(𝑥) + 𝜗𝐴𝑖(𝑥) ≥ 𝑠 and 𝜇𝐴𝑖(𝑥) + 𝜗𝐴𝑖(𝑥) < 𝑡 

Thus there exists an element in ℝ such that 𝑠 ≤ 𝜇𝐴𝑖(𝑥) + 𝜗𝐴𝑖(𝑥) < 𝑡  

Which is the contradiction to our assumption 

Therefore, 𝐴𝑡 = 𝐴𝑠. 

 

4. CONCLUSION : 

    Necessity is the mother of invention. In this fast moving world, the necessity of the fuzzy 

theory became unavoidable. Every man in his day-to-day life, wants to find some thing new 

and different from others; the new structure developed here is one of such kind. In a short span 

of time, we made a study on the fuzzy theory and intuitionistic fuzzy theory. We define a new 

structure called a 𝑘 −intuitionistic fuzzy subset and developed the respective theory mainly in 

the context of algebra. This can be further developed wherever fuzzy theory can be discussed. 
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ABSTRACT:  Prediction of rainfall is the implementation of using science and technology to 

predict the state of the atmosphere. It is critical to calculating rainfall to effectively use water 

resources, agriculture production, and water structure development. The Regression technique 

makes several valuable contributions to the forecasting problem's solution. It also calculates 

the dependent variable's value estimates based on the independent variable's values. This 

article develops a multiple linear regression model for annual rainfall in Coimbatore District. 

The study represents the referred mathematical process and the prediction by using weather 

variables as input information. The model has developed using data from 2001 to 2020, and 

testing forecasts the rainfall intensity over the following years. 

 

Keywords: Annual Rainfall, Multi Linear Regression, Weather variables. 

 

1. INTRODUCTION 

     Rainfall significantly affects the activities of human life. The diversity is quite large and 

characterizes the climate in the Coimbatore district in Tamil Nadu. Global climate change can 

increase the incidence of extreme rainfall. The analysis is needed to obtain rainfall prediction 

information that is very useful for reducing the impact of possible extreme rain events. 

Prediction of rainfall is still a considerable challenge to climatologists. However, it is the 

essential component of a climate system. Most of the burning issues of our time, like a global 

warning, floods, drought, heatwaves, soil erosion, and many other climatic problems, are 

directly related to rainfall. Agriculture is still the primary source of economic activities in most 

countries of the world, and rainfall increases crop production and protects the crops, human 

life, and the ecosystem. There is an increasing demand from policymakers for a reliable 

prediction of precipitation. Therefore it is vital to be able to predict rainfall correctly. 

     Time series data forecasting is a part of statistical modeling widely used in various fields 

because of its benefits in decision making. Time series analysis has several objectives, namely 

forecasting modeling and control. Forecasting is an element that is important in decision-

making activities because whether or not an effective decision is made depends on several 

factors that influence it. However, unseen when a decision is taken. The purpose of time series 

forecasting is to predict the future values of certain variables that vary with time using their 

previous values. Forecasting is related to the formation of models and methods that can be used 

mailto:santhawilliam14@gmail.com
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to produce a good forecast. The use of time-series data for forecasting is based on the behavior 

of past events. 

    In time-series data, the behavior of past events can be used for forecasting because it is 

expected that, in the future, the influence of the behavior of past events will still occur. The 

benefits of forecasting can be felt in many fields, including economics, finance, marketing, and 

production. Generally, time-series research uses linear time series models. Specifically, linear 

regression is a predictive statistical approach for modeling the relationship between a 

dependent variable with a given set of independent variables. Regression models are often used 

for estimating future events or values. Regression analysis includes parametric methods such 

as linear and logistic regression. Non-parametric methodologies such as projection pursuit, 

additive models, multivariate adaptive regression, etc., have also been applied to estimation 

and prediction problems (Holmstrom et al. 1997). 

     Regression analysis yields estimations of the dependent variable's values based on the 

independent variable's values. First, measure the strength of the regression relationship 

between y and the x variable. Then, the regression line depicts the average association between 

the variables X and Y. To determine which of the x variables are significant in predicting input 

into the equation; the equation produces estimations of the dependent variable. When values of 

the independent variable are entered into the equation, the equation makes measures of the 

dependent variable. The current study uses Multi Linear Regression model to forecast yearly 

rainfall in Coimbatore District from 2001 to 2020. 

 

2. METHODOLOGY 

Area of study and Data collection 

    Coimbatore district is in the western part of Tamil Nadu, enclosed by the Western Ghats 

mountain range on the west and north. The district's boundary is Palakkad in the west, Nilgiris 

in the north, erode district in the northeast, and south is Idukki. The rest of the section lies in 

the rain shadow region of the Western Ghats and experiences salubrious climate most parts of 

the year. The mean maximum and minimum temperatures for Coimbatore city during summer 

and winter vary between 35 °C to 18 °C. The average annual rainfall in the plains is around 

700 mm. The data was collected from the statistical department of Coimbatore from 2001 to 

2020. 

     For this current study weather parameters of the Coimbatore district were used which are 

Rainfall, Maximum temperature, Minimum temperature and wind speed.  

 

Table 1: Data collection from 2001 to 2020 

Year Rainfall(y) Wind 

Speed(x1) 

Average 

Temperature(x2) 

2001 752.8 18 26.96759259 

2002 665.7 18.75 27.03703704 

2003 644.7 29.58333333 27.06018519 

2004 959.8 18.58333333 27.12962963 

2005 973.5 19.41666667 25.18518519 

2006 924.6 17.08333333 26.85185185 



109 

 

2007 863.1 14.16666667 26.71296296 

2008 725.3 13.25 27.03703704 

2009 798.1 14.25 26.96759259 

2010 1165.8 14.41666667 26.94444444 

2011 1177.8 15.5 26.99074074 

2012 902.5 16.33333333 27.08333333 

2013 806.6 17.58333333 27.08333333 

2014 619.9 20.16666667 27.12962963 

2015 1000.7 16.91666667 27.03703704 

2016 1418.1 18.25 27.12962963 

2017 791.5 18 27.15277778 

2018 952 18.83333333 27.10648148 

2019 859.5 18 27.03703704 

2020 638 18.5 27.10647963 

 

Multiple Regression 

     A multiple linear regressions analysis is working out to predict the values of a dependent 

variable, Y, given a set of k explanatory variables (x1,x2…,xk). 

 y = θ0 + θ1X1 + θ2X2 + ⋯⋯⋯⋯+ θkXk + ε  …………….. (1) 
 Where y → dependent ⧸response variables 

             Xi  →   independent ∕ explanatory  variables, 

              θi   → determine the partial contribution of each of the  x variable  
 

               ε → is the random error term θ1 = ∂y∂x1 , θ2 = ∂y∂x2 , …………… . . θk = ∂y∂xk 

 

Three variable model y = θ0 + θ1x1 + θ2x2 + ε 

where  Y denotes a dependent variable, x1  denote the first independent variable, x2    denote the second independent variable 

We can obtain the parameter estimates by normalizing the above regression equation. Σy = nθ0 + θ1Σx1 + θ2Σx2 Σx1y = θ0Σx1 + θ1Σx12 + θ2Σx1x2 Σx2y = θ0Σx2 + θ1Σx1x2 + θ2Σx22 

In matrix form 

 [ n Σx1 Σx2Σx1 Σx12 Σx1x2Σx2 Σx1x2 Σx22 ]   [θ0θ1θ2]   =  [ ΣyΣx1yΣx2y] 
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Using Cramer’s rule 

 

θ1 = [ n Σy Σx2Σx1 Σx1y Σx1x2Σx2 Σx2y Σx22 ]
[ n Σx1 Σx2Σx1 Σx12 Σx1x2Σx2 Σx1x2 Σx22 ]          θ2 = [ n Σx1 ΣyΣx1 Σx12 Σx1yΣx2 Σx1x2 Σx2y]

[ n Σx1 Σx2Σx1 Σx12 Σx1x2Σx2 Σx1x2 Σx22 ] 
 

Multiple Linear Regression in Linear Algebra Notation y = xθ + ε 

            y =
[  
   
 y1y2y3∙∙∙yn]  

   
 
 

 

The response value for all observations is n×1 dimensional vectors. 

x =  [  
  1 x11 x12 ∙ ⋅ x1k1 x21 x22 ∙ ∙ x2k∙ ∙ ⋅ ∙ ⋅ ⋅∙ ⋅ ⋅ ⋅ ⋅ ⋅1 xn1 xn2 ⋅ ⋅ xnk]  

  
 

 

The intercept and slopes are k×1 dimensional vectors denoted by ‘’ 

θ =  [  
  θ1θ2⋅⋅θk]  

  
 

 

All the error term has an n×1 dimensional vector denoted by ε   

ε = [   
 ε1ε2⋅⋅εn]  

  
 

 

Here we use the method of Ordinary Least Square 

MLR is y = θ0 + θ1X1 + θ2X2 + ⋯⋯⋯⋯+ θkXk + ε 

Using the OLS method, the objective is to obtain estimates  (θ1, θ2, θ3 ……… . θk) by  

Minimizing  SSE = Σe2 =  Σ(yi − predicted y)2 

 

 The parameter estimates are said to be the best linear unbiased estimates can then be used in 

the prediction equation. 
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3. Result and Discussion : 

    To establish the multilinear equation using MS Excel under the dependent variable rainfall 

corresponding to independent variables Temperature and wind speed data from 2001 to 2020. 

 Coefficients Standard Error t Stat P-value 

Intercept 2792.568685 2957.269022 0.94430661 0.358242 

Wind speed -18.6588644 13.75970183 -1.356051506 0.192823 

Average  

Temperature 

-58.61084474 109.2603048 -0.536433107 0.59861 

 

    In the rainfall factors, we have used by multiple regression approach. This approach will 

select rainfall data and other climate factors in the Coimbatore district. Applying a multiple 

linear regression method to the data set and finding an approximate equation between rainfall 

and climate variables. So the Estimated MLR is Rainfall = 2792.57 + (−18.6589 ∗ x1  ) + (−58.611 ∗ x2 )……… ..(2) 

From equation (2), we can predict the rainfall for future years by using wind speed and 

temperature. 

 

Table: 2 comparisons between Actual and Predict value 

Observation Actual Rainfall Predicted Rainfall Percentage of Error 

1 752.8 876.1157431 16.31 

2 665.7 858.0513972 28.89 

3 644.7 654.5569671 1.53 

4 959.8 955.7342779 0.42 

5 973.5 954.1507557 1.99 

6 924.6 900.0033647 2.66 

7 863.1 962.5654476 11.52 

8 725.3 860.6751514 18.66 

9 798.1 746.0864846 6.52 

10 1165.8 1044.3334064 10.42 

11 1177.8 1021.4061716 13.27 

12 902.5 900.4301878 0.23 

13 806.6 877.1066073 8.74 

14 619.9 726.1910759 17.15 

15 1000.7 992.2593153 0.843 

16 1418.1 1452.9538994 2.46 

17 791.5 800.2618829 1.107 

18 952 952.4262943 0.045 

19 859.5 872.0455455 1.45 

20 638 658.6460243 3.23 

 

From the above table the percentage of Error is 7.38 
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Table: 3 Results of Multi linear regression 

Regression Statistics 

R Square(co efficient of 

Determination) 

0.819648 

Adjusted R Square 0.7984 

Observations 20 

 

 
 

Figure 1: Comparison between actual and predict value 

 

4. CONCLUSION: 

    Regression analysis is a quantitative analysis of the relationship between response and 

explanatory variables. Multi Linear Regression is an extension of simple Regression. The 

analysis aims to determine the connection between rainfall and weather variables such as max 

temperature, min temperature, and wind speed. That is, to examine the functional relationship 

between the variables and, as a result, to develop a prediction mechanism. This research uses 

a regression model to explain occurrence analysis with an accuracy of 92.62 percent, which 

may utilize the model to create yearly precipitation projections. In addition, the precipitation 

model used provided information regarding the Coimbatore District’s water resources and 
agriculture. 
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 ABSTRACT:  In this paper, a mathematical model representing the transmission dynamics of 

Zika virus between the human ( hhhh RIES ,,, ) and the vector (mosquito) ( vvv IES ,, ) population 

are considered. The main objective of this paper is to implement the perturbation techniques 

such as Homotopy Perturbation Method (HPM) and New Homotopy Perturbation Method 

(NHPM) to obtain the analytical solution of the model. Each of the parameters involved in the 

transmission of the Zika virus are analyzed with the help of the perturbation technique. As the 

recovery rate of the infected human population increases, the human population becomes free 

from the transmission of the Zika virus.  

 

Keywords: Transmission dynamics, Human and vector population, Zika virus, Aedes mosquito, 

Recovery rate, Perturbation techniques. 

 

1. INTRODUCTION: 

 The Flaviviridae family and Flavivirus species include the Zika virus. Aedes 

mosquitoes that are active during the day, like A. aegypti and A. albopictus, transmit it. The 

Zika Forest in Uganda, where the virus was first discovered in 1947, gave the disease its name. 

Zika was first discovered in Uganda in 1947 in primates; it was then discovered in people in 

1952. Dengue, yellow fever, Japanese encephalitis, and West Nile viruses all belong to the 

same family as the Zika virus. It has been documented to happen within a constrained equatorial 

band stretching from Africa to Asia since the 1950s. The Zika virus pandemic of 2015–2016 

was caused by the virus' eastward spread across the Pacific Ocean to the Americas between 

2007 and 2016. The genome of the zika virus is non-segmented, single-stranded, and 10 

kilobases in size. It is also enclosed and icosahedral and has positive-sense RNA genome [1-

6].  

 Aedes mosquito species such as A. africanus, A. apicoargenteus, A. furcifer, A. hensilli, 

A. luteocephalus, and A. vittatus are additionally transmitting the virus, which has an extrinsic 

incubation time of approximately 10 days in mosquitoes. With only infrequent transmission to 

people, the virus's host were monkeys and mosquitoes whose cycle is known as the enzootic 

cycle. Aedes aegypti mosquitoes are the main vectors of Zika, but it can also be shared through 

blood transfusions and sexual contact. Many Zika virus patients will not show any signs or 

only show minor ones. Fever, rash, headache, joint pain, red eyes, and muscle pain are among 

the most typical Zika signs. Days to a week can pass between the onsets of symptoms. 

Diagnosis of Zika is based on a person’s recent travel history, symptoms, and test results. A 

mailto:18vaishnavik-pgmat@sfrcollege.edu.in
mailto:malinidevi-mat@sfrcollege.edu.in
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blood or urine test can confirm a Zika infection. Symptoms of Zika are similar to other illnesses 

spread through mosquito bites, like dengue and chikungunya. Doctors or other healthcare 

providers may order tests to look for several types of infections [7-12]. 

 The development of inactivated vaccines and other non-live vaccines that are safe to 

use in pregnant women has been recommended as a top priority by the World Health 

Organization. A vaccine against Zika was being developed by 18 companies and institutions 

as of March 2016, but they estimate it won't be generally accessible for another 10 years. The 

FDA first approved a human clinical study for a Zika vaccine in June 2016. A DNA vaccine 

received approval for phase-2 clinical studies in March 2017. This vaccine is made up of a 

plasmid, a microscopic circular fragment of DNA that expresses the genes for the Zika virus 

envelope proteins [13-24]. Section 2 provides the mathematical model of the Zika virus as 

proposed by S.K.Biswas et.al and all the parameters involved in it. Section 3 deals with the 

perturbation techniques like Homotopy Perturbation and New Homotopy Perturbation methods 

to derive the analytical solution of the model. In section 4, the analytical solution is verified for 

its accuracy with the numerical solution using the Matlab software and is represented in the 

form of graphs which clearly shows the response of the two population, human and vector 

concerning time under the variation of values in each parameter of the model. 

 

2. TRANSMISSION DYNAMICS OF ZIKA VIRUS MATHEMATICAL MODEL 

     Let the total human population Nh(t) is classified into four compartments comprised of 

susceptible human Sh(t), exposed human Eh(t), infected human Ih(t) and recovered human Rh(t). 

Here consider a human individual who recovered from the infection of the Zika virus gain 

lifelong immunity from it. Since only female mosquitoes spreads the Zika infection so the total 

female mosquito population Nv(t) is divided into three compartments viz. susceptible 

mosquitoes Sv(t), exposed mosquitoes Ev(t) and infected mosquitoes Iv(t). Again recovery of 

mosquitoes from Zika infection is not taken into consideration due to its short life span. 

Let π be the constant recruitment rate of susceptible humans and μ is the natural death rate of 

the human population. Suppose, susceptible individuals acquire infection due to effective 

contact with an infected vector at the rate 
h

v

h

v

N

Ic

N

Ib 2
2

12
1 ,





  be the infection due to 

sexual interaction with the infected individuals and susceptible humans become aware at a 

constant, a  & enter into recovered class Rh. So the total infection strength of humans is 

λh=λ1+λ2. Here assume that the susceptible mosquitoes acquire infection at a rate λvSv from 

infected humans where
h

h

v
N

Ib 32  . 

The transmission dynamics of the Zika virus between the human and the vector population [25] 

can be represented by the following system of non-linear differential equations: 

hh

h SaS
dt

dS
)()( 21                                                                                         (2.1) 

hh

h ES
dt

dE
)()( 21                                                                                              (2.2) 

hh

h IE
dt

dI
)(                                                                                                            (2.3) 



116 

 

hhh

h aSRI
dt

dR
                                                                                                           (2.4) 

vvv

v SbS
dt

dS
)( 11                                                                                                  (2.5) 

vvv

v EbS
dt

dE
)( 11                                                                                                 (2.6) 

vv

v IbE
dt

dI
)( 11                                                                                                         (2.7) 

The initial condition at the time, 0t , 0hh SS  , 0hEE  , 0hh II  , 0hh RR  , ,0vv SS 

,0vv II  0vv EE 
.
                                                                                                                             

(2.8)                                                                              

 

Parameters Description 

 

Nh Total human population 

Sh Susceptible human population 

Eh Exposed human population 

Ih Infected human population 

Rh Recovered human population 

Nv Total vector population 

Sv Susceptible vector population 

Ev Exposed vector population 

Iv Infected vector population 

π,π1 The recruitment rate of humans and mosquitoes respectively 

μ,μ1 The natural death rate of humans and mosquitoes 

respectively 

α1 Transmission probability per biting of Susceptible humans 

with infected mosquito 

α3 Transmission probability per biting of Susceptible mosquito 

with infected humans. 

c Sexual contact rate between a susceptible human to an 

infected human 

α2 Transmission probability per sexual contact- among a 

susceptible and infected human 

σ Progression rate from exposed to infected human 

γ The recovery rate of infected human 

a Rate of awareness in the host population 

σ1 Progression rate from exposed to infected mosquito 

b Constant rate of effective mosquito control 

    Table 1 List of Parameters 
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3 PERTURBATION TECHNIQUES FOR OBTAINING ANALYTICAL SOLUTION 

 Perturbation techniques like Homotopy Perturbation Method and New Homotopy 

Perturbation Method [26-31] are used to derive the analytical solution of the Zika virus 

mathematical model equation from (2.1) to (2.7). 

 

3.1 HOMOTOPY PERTURBATION METHOD 
 To find the solution of equation (2.1) - (2.7) construct the homotopy as follows: 
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                                              (3.7) 

The solution of equations (2.1) - (2.7) is written as a power series as follows: 

...10  hhh pSSS                                                                                                              (3.8) 

...10  hhh pEEE                                                                                                            (3.9)

...10  hhh pIII                                                                                                            (3.10) 

..10  hhh pRRR .                                                                                                            (3.11) 

..10  vvv pSSS                                                                                                               (3.12) 

...10  vvv pEEE                                                                                                              (3.13) 

.10  vvv pIII ..                                                                                                               (3.14) 

Substituting the equations (3.8)-(3.14)  in (3.1)-(37) we get,
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 hhhh

h pSSapSS
dt
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                         (3.15) 
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Comparing the coefficients of 0p  of equations (3.15) - (3.21), 

0)()(: 0021
00 








 hh
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dt
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0)(: 0
00 



  h

h E
dt

dE
p                                                                                              (3.23) 

0)(: 0
00 



  h

h I
dt

Id
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0: 0
00 



  h

h R
dt

Rd
p                                                                                                       (3.25) 

0)(: 010
00 



  vvv

v SbS
dt

dS
p 

                                                                                (3.26) 
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0)(: 011
00 



  v

v Eb
dt

dE
p 

                                                                                    (3.27) 

0)(: 01
00 



  v

v Ib
dt

Id
p 

                                                                                            (3.28) 

Using the initial condition, the solution of the equations (2.1) - (2.7) is given as follows: 
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The Solution of Susceptible human ( hS ), Exposed human ( hE ), Infected human 

( hI ), Recovered human ( hR ), Susceptible vector ( vS ), Exposed vector ( vE ) and Infected vector 

( vI ) is 
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3.2 NEW HOMOTOPY PERTURBATION METHOD 

 

To find the solution of equation (2.1) - (2.7) by the new homotopy as follows: 
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The solution of equations (2.1) - (2.7) is written as a power series as follows: 

...10  hhh pSSS                                                                                                              (3.50) 

...10  hhh pEEE                                                                                                            (3.51)

...10  hhh pIII                                                                                                            (3.52) 

..10  hhh pRRR .                                                                                                            (3.53) 

..10  vvv pSSS                                                                                                               (3.54) 

...10  vvv pEEE                                                                                                              (3.55) 

.10  vvv pIII ..                                                                                                               (3.56) 

Substituting the equations (3.50)-(3.56) in (3.43)-(3.49) we  get,
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Comparing the coefficients of 0p  from equations (3.57) - (3.63),  
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The Solution of Susceptible human ( hS ), Exposed human ( hE ), Infected human 

( hI ), Recovered human ( hR ), Susceptible vector ( vS ), Exposed vector ( vE ) and Infected vector 

( vI ) is 
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4. RESULTS AND DISCUSSIONS: 

 The analytical solution of the system of equations of the susceptible human population, 

the exposed human population, the infected human population, the recovered human 

population, the susceptible vector population, the exposed vector population, infected vector 

population (2.1) - (2.7) are given in equations (3.36) - (3.42) & (3.71) - (3.77) using homotopy 

perturbation & new homotopy perturbation respectively and is compared with its numerical 

simulation.  

 

                               Figure 1(a)           Figure 2(b) 

Figure 1(a) and 1(b): Figure 1(a) and 1(b) represent the susceptible human population S h  

versus time t for the parameter, the recruitment rate of humans (π) and the natural death rate 

of humans (μ). In the graph, the dashed and the star line represent the analytical solution 
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equation of (HPM) & (NHPM) respectively and the dotted line represents the numerical 

solution. 

 From Figures (1(a)) & (1(b)) see that the susceptible population rate versus time for the 

human population rate reduces for the lost values of the recruitment rate of humans (π) and 
natural death rate of human (μ) for the time and the other parameters are remain fixed.   
 

 

      Figure 2(a)              Figure 2(b) 

Figure 2(a) and 2(b): Figure 2(a) and 2(b) represent the exposed human population E h  versus 

time for the parameter, the progression rate from exposed to infected human (σ)  and the 

natural death rate of humans (μ). In the graph, the dashed and the star line represent the 

analytical solution equation of (HPM) & (NHPM) respectively and the dotted line represents 

the numerical solution. 
 

 From Figures (2(a)) & (2(b)) state that the exposed population rate versus time for the 

human population rate diminishes for the shrink values of progression rate from exposed to 

infected human (σ) and natural death rate of human (μ) for the time and the left out parameters 

are kept stable. 

 

  

       Figure 3(a)              Figure 3(b) 

Figure 3(a) and 3(b): Figure 3(a) and 3(b) represent the infected human population I h versus 

time for the parameter, the recovery rate of infected human (γ) and the natural death rate of 
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human (μ). In the graph, the dashed and the star line represent the analytical solution equation 

of (HPM) & (NHPM) respectively and the dotted line represents the numerical solution. 
                          

 From Figures (3(a)) & (3(b)) observe that the infected population rate versus time for 

the human population rate increase for the decreased values of the recovery rate of infected 

humans (γ) and the increased values of natural death rate of human (μ) for the time and the 
leftover parameters are still static. 
 

 

        Figure 4(a)              Figure 4(b) 

Figure 4(a) and 4(b): Figure 4(a) and 4(b) represents the recovered human population  

R h  versus time for the parameter, the natural death rate of humans (μ) and the recovery rate 

of infected humans (γ). In the graph, the dashed and the star line represent the analytical 

olution equation of (HPM) & (NHPM) respectively and the dotted line represents the numerical 

solution. 

 From Figure (4(a)) notice that the recovered population rate versus time for the human 

population rate grows for the falling value natural death rate of humans (μ) for the time and γ 
& a stay constant. From Figure (4(b)) show that the recovered population rate versus time for 

the human population rate goes down for the dwindling value of recovery rate of infected 

human ( γ ) for the time and μ & a retain permanently. 

   

       Figure 5(a)             Figure 5(b) 
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Figure 5(a) and 5(b): Figure 5(a) and 5(b) represents the susceptible vector population S v  

versus time for the parameter, susceptible mosquitoes acquire infection from infected human 

(λ v ) and the recruitment rate of mosquitoes (π 1 ). In the graph, the dashed and the star line 

represent the analytical solution equation of (HPM) & (NHPM) respectively and the dotted 

line represents the numerical solution. 

 

 From Figure (5(a)) & (5(b)) describe that the susceptible vector population rate versus 

time for the mosquitoes population rate go narrow for the drop values of susceptible mosquitoes 

acquiring infection from infected human ( λ v  ) & recruitment rate of mosquitoes  

( π 1  ) for the time and residual parameters hold solid.     

 

     

           Figure 6(a)              Figure 6(b) 

Figure 6(a) and 6(b): Figure 6(a) and 6(b) represents the exposed vector population E v  versus 

time for the parameter, the progression rate from exposed to infected mosquitoes (σ1) 
and the natural death rates of mosquitoes (μ1). In the graph, the dashed and the star line 

represent the analytical solution equation of (HPM) & (NHPM) respectively and the dotted 

line represents the numerical solution. 

                                                                                   

 From Figures (6(a)) & (6(b)) sketch that the exposed vector population rate versus time 

for the mosquitoes population rate declined for the shortened values of progression rate from 

exposed to infected ( σ 1  ) & natural death rate of mosquitoes ( μ 1 ) for the time and rest 

parameters sustain rigidly. 
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         Figure 7(a)              Figure 7(b) 

Figure 7(a) and 7(b): Figure 7(a) and 7(b) represents the infected vector population I v versus 

time for the parameter, the natural death rate of mosquitoes (μ1) and the constant rate of 

effective mosquito control (b). In the graph, the dashed and the star line represent the 

analytical solution equation of (HPM) & (NHPM) respectively and the dotted line represents 

the numerical solution. 

 From Figure (7(a)) tells that the infected vector population rate versus time for the 

mosquito population rate lessens for the lower value of natural death rate of mosquitoes (μ 1 ) 

for the time and b & σ1 reserve stationary. And Figure (7(b)) explains that the infected vector 
population rate versus time for the mosquito population rate plunge for the rising value of the 

constant rate of effective mosquito control ( b ) for the time and μ1 &σ1 parameters perpetuate 
steady. 

 

5. CONCLUSION: 

 Thus the system of non-linear differential equations on the suspectable human 

population, exposed human population, infected human population, recovered human 

population, suspectable vector population, exposed vector population and infected vector 

population have been solved using the Homotopy Perturbation method (HPM) &  New 

Homotopy Perturbation method (NHPM) and the meticulous of the approximate analytical 

solution has been verified by comparison with its numerical simulation. Thus the analytic result 

helps us to understand the effect of various parameters on the Zika virus model. 
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ABSTRACT:  Connectedness and compactness are useful and fundamental notions. 

Connectedness is one of the principal topological property that are used to distinguish 

topological spaces. Compactness is a way to generalize the properties of finite sets to more 

general sets. In this paper we define these two fundamental concepts on TSBF-algebras and 

prove some of properties on it.  

 

1. INTRODUCTION: 

In this paper, we define two fundamental concepts compactness and connectedness on 

TSBF−algebras in more easier way with the help of identity element of a BF−algebra. We give 
the simpler form of the definitions of compactness and connectedness. Also we discuss the 
necessary condition for separation axioms 𝑇0, 𝑇1 𝑎𝑛𝑑 𝑇2 to hold on TSBF−algebras.  
 

2. PRELIMINARIES : 

Definition 2.1. [2]  A BF-algebra is an algebra (X,∗,0) of type (2,0) satisfying the following 

conditions: 

1. x∗x = 0. 

2. x∗0 = x. 

3. 0∗(x∗y) = y∗x,∀ x,y ∈ X. 

 

Definition 2.2.[9]  Let (F,A) be a soft BF-algebra over X and τ be a soft BF− topology on X. 
Let x ∈ A. Then (F,A,τ) is said to be a topological soft BF-algebra over X with respect to F(x), 

if for every a,b ∈ F(x) and any open set W of a∗b, there exist open sets U and V of a and b 

respectively such that U ∗V ⊆ W. That is, a function f from F(a)×F(a) into F(a) is continuous 

with respect to a topology τ on X, since F(a) is a subalgebra of X. 
Definition 2.2.1 [9] Let (F,A,τ) be a topological soft BF -algebra (TSBF -algebra) over a BF –
algebra X with respect to F(a),a ∈ A Then (F,A,τ) is said to be a topological soft BF1 algebra 
(TSBF1 -algebra) over X with respect to F(a), if x = (x∗y)∗(0∗y), for all x,y ∈ X. 

Theorem 2.3.[8] Let (F,A,τ) be a TSBF−algebra with respect to F(a) over X, and {𝐺𝛼}α∈I be 

the collection of open sets contained in F(a), I ia an index set. Then, arbitrary intersection of 

open sets Gα ’s is open. 
Theorem 2.4.[10] Let (F,A,τ) be a TSBF1 -algebra with respect to F(a) over X. Then the  

smallest open set  for 0, is a subalgebra of X. 
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3. CONNECTEDNESS : 

Definition 3.1 

Let (F,A,τ) be a 𝑇𝑆𝐵𝐹1− algebra with respect to F(a) over X, and S ⊆ X. Then S is said to be 

separated if S = A∪B, where A and B are the non-empty disjoint open sets in X. If S is not 

separated then S is connected. 

Remark 3.2 

1. If U&V are connected subsets of X then U ∗V is also connected. 

2. The left map 𝑙𝑎, a ∈ F(a) maps connected sets into connected sets. 

Theorem 3.3. Let (F,A,τ) be a 𝑇𝑆𝐵𝐹1− algebra with respect to F(a) over X. Then, 

1. If 0 is an interior point of F(a), then F(a) is separated. 

2. If 0 is not an interior point of F(a), then F(a) is connected and every subset S of F(a) is also 

connected. 

3. If 0 is not an interior point of F(a), then (the least open set of 0) 𝐿0 is connected. 

Proof: (1). Assume 0 is an interior point of F(a). So, every x ∈ F(a) is an interior point of F(a). 

Then F(a) can be written as finite union of open sets.   
=⇒ F(a) = ∪{𝑥∈𝐹(𝑎)} 𝐿𝑥 = 𝐿0  ∪{𝑥∈𝐹(𝑎)−𝐿0} 𝐿𝑥. Therefore, F(a) is separated. 

(2) Assume 0 is not an interior point of F(a).  Int F(a) = φ. Implies, there is no open set contained 
in F(a)...(1). Therefore, F(a) cannot be separated into union of two disjoint open sets....(2). 

Hence, F(a) is connected. 

(3). Now, (1) & (2) is true for every S ⊆ F(a) and 𝐿0. So, S and 𝐿0 is connected. 

Theorem 3.4. Let (F,A,τ) be a 𝑇𝑆𝐵𝐹1− algebra with respect to F(a) over finite X. Then, F(a) 
is connected if 0 ∈ ∩{𝑈𝛼∈ 𝜏−{𝜑}}Uα. 
Proof: Since 0 belongs to all open sets 𝑈𝛼 of X except φ and from lemma 3.1.16, we have F(a) ⊆ 𝑈𝛼, for all 𝑈𝛼 ∈ τ −{φ}. So, F(a) cannot be written as disjoint union of two non-empty open 

sets contained in F(a). Hence, F(a) is connected. 

Theorem 3.5. Let (F,A,τ) be a 𝑇𝑆𝐵𝐹1− algebra with respect to F(a) over finite X with the 
condition 0 ∗ x = x, for all x ∈ X and let 0 be an interior point of F(a). If (m,n) = 1 where o(F(a)) 

= n and o(S) = m, then S is connected where S ⊆ F(a). 

Proof: Let S ⊆ F(a). Then, o(F(a)) and o(𝐿0) is even.  o(𝐿𝑥) is even. 

Since (m,n) = 1, then o(S) is odd. Suppose S is not connected. Then, S = A ∪ B, where A and 

B are disjoint non-empty open sets. Since X is finite, the smallest open set for every x ∈ X is 

open. 

Therefore, S = (∪{𝑥∈𝐴}  𝐿𝑥) ∪ (∪{𝑥∈𝐵}  𝐿𝑥) = ∪{𝑥∈𝐴∪𝐵}  𝐿𝑥 = ∪{𝑥∈𝑆}  𝐿𝑥. Then, o(S) 

=∪{𝑥∈𝑆}  𝑜(𝐿𝑥   )is even, which is a contradiction to the fact that o(S) is odd. Hence, S is 

connected. 

Theorem 3.6. Let (F,A,τ) be a 𝑇𝑆𝐵𝐹1− algebra with respect to F(a) over X, with the condition 

that 0∗x = x, ∀x ∈ X. If there exist an open ideal contained in F(a), then F(a) is not connected. 

Proof: Let I be an open ideal contained in F(a) and x ∈ (F(a)−I) Since 0 ∈ I  & x∗x = 0, there 

exist open sets U and V of x such that, U ∗V ⊆ I...(1) If V ⊆ (F(a)−I) then F(a) is separated. If 
not, there exist an element say y, y ∈ V and y / ∈ (F(a)−I). 
Case(i): Let y ∈ 𝐼𝑐 and y ∉ F(a). (1) implies, x∗y ∈ F(a). From lemma 2.2.12, y ∈ F(a). 

Therefore, y ∈ F(a) for all y ∈ V. 
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Case(ii): Let y ∉ 𝐼𝑐and y ∈ F(a). So, y ∈ I. (1) implies, x∗y ∈ I. Since I is ideal, x ∈ F(a). This 

is a contradiction. Therefore, in both cases we can conclude that, y ∈ F(a)−I for all y ∈ V. 

Theorem 3.7. Let (F,A,τ) be a TSBF− algebra with respect to F(a) and S ⊆ F(a). S is 

disconnected if and only if S = ∪{𝑥∈𝑆}  𝐿𝑥. 

Proof: Let S be any subset of F(a). Assume, S = ∪{𝑥∈𝑆}  𝐿𝑥. Clearly, 𝐿𝑥  ∩ 𝐿𝑦  = φ,∀ x,y ∈ F(a). 

S = 𝐿𝑥 ∪ ( 𝑈{𝑦∈𝑆−𝐿𝑥} 𝐿𝑥). Therefore, S is disconnected. 

Conversely, assume S is disconnected. 

=⇒ S = A∪B, where A and B are open and A∩B = φ, B∩A = φ. Clearly, A & B ⊆ F(a). Implies, 

the smallest open set for every x in A, is contained in A. So, A = ∪{𝑥∈𝐴}  𝐿𝑥. Similarly, we can 

write, B  = ∪{𝑥∈𝐵}  𝐿𝑥. Therefore, S = (∪{𝑥∈𝐴}  𝐿𝑥) ∪ (∪{𝑥∈𝐵}  𝐿𝑥) = ∪{𝑥∈𝐴∪𝐵}  𝐿𝑥 = ∪{𝑥∈𝑆}  𝐿𝑥. 

Theorem 3.8. Let (F,A,τ) be a 𝑇𝑆𝐵𝐹1− algebra with respect to F(a) over X, with the condition 

that 0∗x = x, ∀ x ∈ X. If B ⊆ F(a) is connected then the image of B under the left map restricted 

to F(a) 𝑙𝑝, p ∈ F(a) is connected. 

Proof:  The proof of this theorem follows from continuous image of connected set is connected.  

Theorem 3.9. Let (F,A,τ) be a 𝑇𝑆𝐵𝐹1− algebra with respect to F(a) over X, with the condition 

that 0∗x = x, ∀ x ∈ X. If S ⊆ F(a) is separated then the image of S under the left map 𝑙𝑝, 𝑝 ∈𝐹(𝑎) is separated. 

Proof: Let S be a separated set in X. Then S = A∪B, where A amd B are disjoint open subsets 

of X. Now, 𝑙𝑝 (S) = p∗S. Now, p∗S = p∗(A∪B) = (p∗A)∪(p∗B). Since A and B are open, p∗A 

and p∗B is open. Since A∩B is empty,  we have (p∗A)∩(p∗B) = φ. Therefore, the image of S 
under the left map  𝑙𝑝, p ∈ F(a) is separated. 

 

4. COMPACTNESS : 

Definition 4.1. 
Let (F,A,τ) be a TSBF−algebra with respect to F(a) over X and C ⊆ X. A collection A of 

subsets of a space X is said to cover C, or to be a covering of C, if the union of the elements of 

A is equal to C. It is called open covering of C if its elements are open subsets in X. 

Definition 4.2. Let (F,A,τ) be a TSBF−algebra with respect to F(a) over X. A space X is said 

to be compact if every open covering A of X contains finite subcollection that also covers X. 
Theorem 4.3. Let (F,A,τ) be a TSBF−algebra with respect to F(a) over X and C ⊆ F(a) is 

compact. Then image of C under a left map is compact. 

Proof : Since for every left map 𝑙𝑎, a ∈ F(a) restricted to F(a) is continuous, la(C) is compact. 

Theorem 4.4. Let (F,A,τ) be a TSBF−algebra with respect to F(a) over X and C ⊆ F(a) is 

compact if and only if   𝐶 = ⋃ 𝐿𝑥𝑖𝑛𝑖=1 . 

Proof: Assume, C is compact. Since for every x ∈ C, the smallest open set 𝐿𝑥 is open, the 

collection L = {𝐿𝑥  / x ∈ C} of smallest open sets covers C. Therefore, the collection L has a 

finite sub cover say 𝐿𝑥1 , 𝐿𝑥2 , . . . , 𝐿𝑥𝑛 that also covers C. Hence, 𝐶 ⊆ ⋃ 𝐿𝑥𝑖𝑛𝑖=1 .  

Conversely, assume, 𝐶 ⊆ ⋃ 𝐿𝑥𝑖𝑛𝑖=1 . Let 𝔸 be an open covering of C. Let x ∈ C, there is at least 

one element say 𝐴1 ∈  𝔸 Clearly, the smallest open set 𝐿𝑥 ⊆ 𝐴1. For every x ∈ C, there is an 

element 𝐴𝑥 ∈ 𝔸 and 𝐿𝑥 ⊆ 𝐴𝑥𝑖 . Since 𝐶 ⊆ ⋃ 𝐿𝑥𝑖 ⊆ ⋃ 𝐴𝑥𝑖𝑛𝑖=1𝑛𝑖=1 . Implies, 𝐶 ⊆ ⋃ 𝐴𝑥𝑖𝑛𝑖=1 . 

Therfore, the open cover A has finite subcover that covers C. Hence, C is compact. 
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Theorem 4.5 Let (F,A,τ) be a 𝑇𝑆𝐵𝐹1−algebra with respect to F(a) over X with the property 

that, 0 ∗ x = x,∀ x ∈ X and 𝐶1, 𝐶2, … , 𝐶𝑛 ⊆ 𝐹(𝑎) are compact. Then 𝐶1 ∗ 𝐶2 ∗ . . .∗ 𝐶𝑛 is 

compact. 

Proof: We want to prove this theorem by induction on n.  

Let n = 2. Let 𝐶1, 𝐶2 ⊆ F(a) are compact. From theorem 2.4, 𝐶1 ⊆ ⋃ 𝐿𝑥𝑖𝑛𝑖=1 and 𝐶2 ⊆ ⋃ 𝐿𝑦𝑖𝑚𝑖=1 , 

where 𝑥𝑖 ∈ 𝐶1  and 𝑦𝑖 ∈ 𝐶2. Let 𝑧 ∈ 𝐶1 ∗ 𝐶2 . So, z = x∗y, where x ∈ 𝐶1 and y ∈ 𝐶2. 𝐿𝑧 =𝐿{𝑥∗𝑦} = 𝐿𝑥 ∗ 𝐿𝑦.  Implies, 𝐿𝑥𝑖 ∗ 𝐿𝑦𝑖 = 𝐿𝑧𝑖. Let k = max{n,m}. Therefore, 𝐶1 ∗ 𝐶2 ⊆ ⋃ 𝐿𝑧𝑖𝑘𝑖=1 , 

where 𝐿𝑧𝑖 is the smallest open set for 𝑧𝑖 ∈ 𝐶1 ∗ 𝐶2 . From theorem, 2.4, 𝐶1 ∗ 𝐶2 is 

compact.....(1). Assume, 𝐶1 ∗ 𝐶2 ∗ . . .∗ 𝐶𝑛−1 is compact........(2). For n, 𝐶1 ∗ 𝐶2 ∗ … . .∗ 𝐶𝑛 =  (𝐶1 ∗ 𝐶2 ∗ …𝐶{𝑛−1} ) ∗ 𝐶𝑛 is compact. 

Remark 4.6. 

1. Finite union of compact set is compact. 

2. Arbitrary intersection of compact set is compact. 

Theorem 4.7. Let (F,A,τ) be a 𝑇𝑆𝐵𝐹1−algebra with respect to F(a) over X with the property 

that, 0 ∗ x = x,∀ x ∈ X. Arbitrary union of compact sets contained in F(a) is compact. 

Proof: From theorem 3.17 and theorem 2.3 we can prove this theorem. 

Remark 4.8. 

 In above theorem 4.7, put F(a) = X, then arbitrary union of compact subsets of X is compact. 

Theorem 4.9. Let (F,A,τ) be a 𝑇𝑆𝐵𝐹1−algebra with respect to F(a) over X. If 0 is not an interior 

point of F(a), then every subset of F(a) is compact. 

Proof: Assume, 0 is not an interior point of F(a). From theorem 4.7, there is no interior points 

of F(a). Let A ⊆ F(a). Therefore, every open cover of A has a finite sub cover that also covers 
A. A is compact. 

Theorem 4.10. Let (F,A,τ) be a 𝑇𝑆𝐵𝐹1−algebra with respect to F(a) over X and B ⊆ F(a). If 

IntB = φ, then B is compact. 
Proof: Let B ⊆ F(a). Since IntB = φ, 0 is not an interior point of B and F(a). 
From theorm 4.9, B is compact. 

Theorem 4.11. Let (F,A,τ) be a 𝑇𝑆𝐵𝐹1−algebra with respect to F(a) over X and 0 belongs to 

every open set of 𝑥 ∈ 𝐴 . Then every subset of F(a) is compact. 

Proof: Let B ⊆ F(a). , IntB = φ. 
From theorem 4.9, B is compact. 

Remark 4.12. 

1. The smallest open set for x ∈ F(a) is compact. 

2. Every open subspace of compact space is compact. 

3. Compact sets are separated. 

4. If 0 is not a limit point of a set S ⊆ F(a), then S is compact. 

5. Finite cross product of compact sets is compact. 
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ABSTRACT: In this paper we speak approximately the Anti multi fuzzy BH-Ideals and 

associated homes in BH-Algebras. Multi Fuzzy set concept is a extension of fuzzy set concept. 

These offers with the multi-dimensional fuzziness. we introduce the perception of Anti multi-
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1. INTRODUCTION: 

Y. Imai and K. Iseki [1,2&3] are brought lessons of summary algebras. BCK- algebras and 

BCI-algebras. It is understood that the elegance of BCK-algebras is a right subclass of th 

elegance of BCI-algebras. K. Iseki and S. Tanaka [4] are brought creation to concept of BCK-

algebras. L.A. Zadeh [5] are brought fuzzy units. S. Sabu and T.V. Ramakrishnan[6] are 

brought Multi-Fuzzy units, The preception of BH-algebras is brought with the aid of using J.B.  

Jun, E.H. Roh and H.S. Kim[7] .Since then, numerous authors have studied BH-algebras. In 

particular, Q. Zhang, E.H. Roh and Y.B. Jun [8] studied the fuzzy concept in BH-algebras. K. 

Anitha and N. Kandaraj [9] are brought Fuzzy subalgebras on BH-algebras. K. Anitha and N. 

Kandaraj are brought Fuzzy ideals and Fuzzy dot ideals on BH-algebras.  In this paper, we 

outline Anti multi-fuzzy ideals in BH-algebra and talk a number of their associated primarily 

based on level subsets and homomorphism. 
 

2. PRELIMINARIES: 

In this phase we talk the fundamental definitions of a BH-algebras. 

Definition 2.1:[1,2,3] Let 𝑋 be a nonempty set with a binary operation ∗ and a constant 0. 

Then (X, *, 0) is referred to as a BCI-algebras if it satisfies the subsequent conditions. 

1. ((𝑥 ∗ 𝑦) ∗ (𝑥 ∗ 𝑧)) ∗ (𝑧 ∗ 𝑦) = 0 

2. (𝑥 ∗ (𝑥 ∗ 𝑦)) ∗ 𝑦 = 0 

3. 𝑥 ∗ 𝑥 = 0 

4. 𝑥 ∗ 𝑦 = 0  and 𝑦 ∗ 𝑥 = 0 ⟹ 𝑥 = 𝑦  ∀𝑥, 𝑦 ∈ 𝑋. 
Example 2.2: Let 𝑋 = {0, 𝑎, 𝑏, 𝑐} be a set with the subsequent cayley table. 

 

 

 

 

* 0 a b C 
0 0 0 0 0 
a a 0 a 0 
b b b 0 0 
c c c c 0 
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Then (𝑋,∗, 0) is known as a BCI-algebras. 

Definition 2.3:[1,2,3] Let 𝑋 be a nonempty set with a binary operation ∗ and a constant 0. 

Then (X, *, 0) is known as a BCK-algebras if it satisfies the subsequent conditions. 

1. ((𝑥 ∗ 𝑦) ∗ (𝑥 ∗ 𝑧)) ∗ (𝑧 ∗ 𝑦) = 0 

2. (𝑥 ∗ (𝑥 ∗ 𝑦)) ∗ 𝑦 = 0 

3. 𝑥 ∗ 𝑥 = 0 

4. If 𝑥 ∗ 𝑦 = 0 and 𝑦 ∗ 𝑥 = 0 ⟹ 𝑥 = 𝑦 

5. 0 ∗ 𝑥 = 0 for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 
Example 2.4: Let𝑋 = {0,1,2,3} be a set with the subsequent cayley table. 

 

 

 

 

 

 

 

 

 

Then (𝑋,∗, 0) is known as a BCK-algebras. 

Definition 2.5:[7,8] Let 𝑋 be a nonempty set with a binary operation ∗ and a constant    0. Then (𝑋,∗, 0) is referred to as a BH-algebras if it satisfies the following 

conditions. 

1. 𝑥 ∗ 𝑥 = 0 

2. 𝑥 ∗ 0 = 𝑥 

3. If 𝑥 ∗ 𝑦 = 0 and 𝑦 ∗ 𝑥 = 0 ⟹ 𝑥 = 𝑦 𝑥, 𝑦 ∈ 𝑋. 
Example 2.6: Let 𝑋 = {0,1,2,3} be a set with the subsequent cayley table. 

 

 

 

 

 

 

Then (𝑋,∗, 0) is known as a BH-algebras. 

         Definition 2.7:[8] 

Let 𝑆 be a nonempty subset of a BH-algebra 𝑋, then 𝑆 is referred to as subalgebra 

of BH-algebra if 𝑥 ∗ 𝑦 ∈ 𝑆 for all 𝑥, 𝑦 ∈ 𝑆. 
         Definition 2.8:[8] 

                  Let 𝑋 be a BH-algebra and 𝐼 be a subset of X, then I is known as a ideal of 𝑋 if     

           Satisfies the following conditions. 

1. 0 ∈ 𝐼 

2. 𝑥 ∗ 𝑦 ∈ 𝐼  and 𝑦 ∈ 𝐼 ⟹ 𝑥 ∈ 𝐼 for all 𝑥, 𝑦 ∈ 𝐼 

3. 𝑥 ∈ 𝐼 and 𝑦 ∈ 𝑋 ⟹ 𝑥 ∗ 𝑦 ∈ 𝐼 

 

* 0 1 2 3 

0 0 0 0 0 

1 1 0 1 2 

2 2 3 0 0 

3 3 1 2 0 

* 0 1 2 3 

0 0 1 2 3 

1 1 0 2 1 

2 2 3 0 0 

3 3 2 3 0 
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Definition 2.9:[9] 

Let 𝜎 be a fuzzy set in a BH-algebra X. Then 𝜎 is referred to as a fuzzy BH-subalgebra if 𝜎(𝑥 ∗ 𝑦) ≥ min{𝜎(𝑥), 𝜎(𝑦)} ∀𝑥, 𝑦 ∈ 𝑋 

Definition 2.10:[7,8,10] 

      Let 𝜎 be a fuzzy set in a BH-algebra X. Then 𝜎 is referred to as a fuzzy BH-ideal if it           

      satisfies the subsequent conditions. 

1. 𝜎(0) ≥ 𝜎(𝑥) 

2. 𝜎(𝑥) ≥ min{𝜎(𝑥 ∗ 𝑦), 𝜎(𝑦)} 
3. 𝜎(𝑥 ∗ 𝑦) ≥ min{𝜎(𝑥), 𝜎(𝑦)}∀𝑥, 𝑦 ∈ 𝑋. 

   

   Definition 2.11[7,8] A mapping 𝑔: 𝑋 → 𝑌 of a BH-algebra is referred to as a      

     homomorphism if  𝑔(𝑥 ∗ 𝑦) = 𝑔(𝑥) ∗  𝑔(𝑦) ∀𝑥, 𝑦 ∈ 𝑋. 
   Definition 2.12[6] 

    Let 𝑋 be a nonempty set. Define a multi-fuzzy set B in X is a set of ordered sequences: 

     𝐵 = {(𝑥, 𝜎1, 𝜎2, ……𝜎𝑖 … . . ): 𝑥 ∈ 𝑋}, where 𝜎𝑖: 𝑋 → [0,1] for all i 

  Remark 2.13[6] 

1. If the sequences of the membership functions have only k-terms(finite wide of terms) 

k is called the dimension of B. 

2. The set of all multi-fuzzy sets in X of dimension k is denoted through 𝑀𝑘𝐹𝑆(𝑋). 
3. The multi-fuzzy membership function 𝜎𝐵(𝑥) is a function from 𝑋 to [0,1]𝑘such that 

for all 𝑥 ∈ 𝑋 𝜎𝐵(𝑥) =(𝜎1(𝑥), 𝜎2(𝑥), … . , 𝜎𝑘(𝑥)) 

4. For the sake of simplicity, we denote the multi-fuzzy set as 𝐵 = {(𝑥, 𝜎1(𝑥), 𝜎2(𝑥), ……𝜎𝑘(𝑥)… . . ): 𝑥 ∈ 𝑋} as 𝐵 = (𝜎1, 𝜎2, ……𝜎𝑘). 

 

Definition 2.14[6] 

Let k be a positive integer and allow B and C in 𝑀𝑘𝐹𝑆(𝑋),  where 𝐵 =(𝜎1, 𝜎2, ……𝜎𝑘) and 𝐶 = (𝜌1, 𝜌2, ……𝜌𝑘) then we have got the subsequent members 

of the relations and operations: 

1. 𝐵 ⊆ 𝐶 if and only if 𝜎𝑖 ≤ 𝜌𝑘 , for all 𝑖 = 1,2, …… , 𝑘 

2. 𝐵 = 𝐶 if and only if 𝜎𝑖 = 𝜌𝑘 , for all 𝑖 = 1,2, …… , 𝑘 

3. 𝐵 ∪ 𝐶 = (𝜎1 ∪ 𝜌1, … . . 𝜎𝑘 ∪ 𝜌𝑘) ={(𝑥,max(𝜎1(𝑥), 𝜌1(𝑥)) , … . .max(𝜎𝑘(𝑥), 𝜌𝑘(𝑥))): 𝑥 ∈ 𝑋} 
4. 𝐵 ∩ 𝐶 = (𝜎1 ∩ 𝜌1, … . . 𝜎𝑘 ∩ 𝜌𝑘) ={(𝑥,min(𝜎1(𝑥), 𝜌1(𝑥)) , … . .min(𝜎𝑘(𝑥), 𝜌𝑘(𝑥))): 𝑥 ∈ 𝑋}. 

 

Definition 2.15[6] 

   Let B be a multi-fuzzy set in BH-algebra 𝑋. For any 𝑠 = (𝑠1, 𝑠2, … . . , 𝑠𝑘) where 𝑠𝑖 ∈ [0,1] 
for all i, the set ∪ (𝐵; 𝑠) = {𝑥 ∈ 𝑋/𝐵(𝑥) ≥ 𝑠} is referred to as the multi-level subset of B. 

Definition 2.16[6] 

Let B be a multi-fuzzy set in BH-algebra 𝑋. Then B is referred to as Anti multi-fuzzy closed 

ideal in 𝑋 if it satisfies the subsequent conditions 

1. 𝐵(𝑥) ≤ max{𝐵(𝑥 ∗ 𝑦), 𝐵(𝑦)} 
2. 𝐵(0 ∗ 𝑥) ≤ 𝐵(𝑥) 
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Example 2.17: Let 𝑋 = {0,1,2,3} be a set with the subsequent cayley table. 

 

 

 

 

 

 

 

Then 𝐵 is known as Anti multi-fuzzy closed ideal in 𝑋. 

Definition 2.18[6] 

   Let 𝜎 be a fuzzy set in a BH-algebra X. Then 𝜎 is referred to as Anti fuzzy BH-ideal if it 

satisfies the subsequent conditions. 

      1. 𝜎(0) ≤ 𝜎(𝑥) 

2. 𝜎(𝑥) ≤ max{𝜎(𝑥 ∗ 𝑦), 𝜎(𝑦)} 3. 𝜎(𝑥 ∗ 𝑦) ≤ max{𝜎(𝑥), 𝜎(𝑦)} ∀𝑥, 𝑦 ∈ 𝑋 

3.ANTI MULTI-FUZZY BH-IDEAL IN BH-ALGEBRAS : 

    In this segment we mentioned the Anti multi-fuzzy BH-ideal and its properties. 

Definition 3.1[6] 

Let B be a multi-fuzzy set in BH-algebra 𝑋. Then B is known as a multi-fuzzy BH-ideal in 𝑋 

if it satisfies the subsequent conditions. 

1. 𝐵(0) ≤ 𝐵(𝑥) 

2. 𝐵(𝑥) ≤ max {𝐵(𝑥 ∗ 𝑦), 𝐵(𝑦)} 
3. 𝐵(𝑥 ∗ 𝑦) ≤ max{𝐵(𝑥), 𝐵(𝑦)} ∀𝑥, 𝑦 ∈ 𝑋 

Example 3.2: Let 𝑋 = {0,1,2} be a set with the subsequent cayley table. 

 

 

 

 

 

Define a multi-fuzzy set 𝐵: 𝑋 → [0,1] with the aid of using B(0)=B(1)=(𝑝1, 𝑝2) and 

B(2)=(𝑞1, 𝑞2) where 𝑝1, 𝑝2, 𝑞1, 𝑞2∈ [0,1] with 𝑝1 > 𝑞1 and 𝑝2 > 𝑞2 . Then B is Anti multi-

fuzzy BH-ideal in BH-Algebras. 

Theorem 3.3 

Let 𝑋 be a BH-algebra. Then B is Anti muti-fuzzy BH-ideal in X if and only if B is a Anti 

multi-fuzzy subalgebra of 𝑋.  
Proof: 

Let X be a BH-algebra. 

Let B be Anti multi-fuzzy BH-ideal in BH-algebra X.  

To show that B is Anti multi-fuzzy subalgebra in BH-algebra X 

We recognize that Every Anti multi fuzzy BH-ideal of a BH-algebra X is a Anti multi- fuzzy 

subalgebra of X. 

Let B be Anti multi fuzzy subalgebra in X. 

To show that B is Anti muti fuzzy BH-ideal in X. 

* 0 1 2 3 

0 0 1 2 3 

1 1 0 1 1 

2 2 2 0 2 

3 3 2 2 0 

* 0 1 2 

0 0 1 2 

1 1 0 1 

2 2 2 0 
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Let 𝑥, 𝑦 ∈ 𝑋 

By the use definition of BH-algebras conditions. 

1) 𝐵(0) = 𝐵(𝑥 ∗ 𝑥) 

          ≤ max{𝐵(𝑥), 𝐵(𝑥)} 
           𝐵(𝑥) ∀𝑥𝜖𝑋 

2) 𝐵(𝑥) = 𝐵((𝑥 ∗ 𝑦) ∗ (0 ∗ 𝑦)) 

          ≤ max{𝐵(𝑥 ∗ 𝑦), 𝐵(0 ∗ 𝑦)} 
           ≤ max{𝐵(𝑥 ∗ 𝑦),max{𝐵(0), 𝐵(𝑦)}} 
             ≤ max{𝐵(𝑥 ∗ 𝑦), 𝐵(𝑦)} 

3) It is in reality true. 

Hence B is a Anti multi fuzzy BH- ideal in X. 

Theorem 3.4: 

Let 𝐵1 and 𝐵2 be two Anti multi fuzzy BH-ideals of a BH-algebra X. Then 𝐵1 ∪ 𝐵2 is a Anti 

multi-fuzzy BH-ideal of X. 

Proof: 

Let 𝐵1 and 𝐵2 be two Anti multi fuzzy BH-ideals of a BH-algebra X. 

To show that 𝐵1 ∪ 𝐵2 is a Anti multi-fuzzy BH-ideal of X. 

Let 𝑥, 𝑦 ∈ 𝐵1 ∪ 𝐵2.  

Then 𝑥, 𝑦 ∈ 𝐵 1 and 𝑥, 𝑦 ∈ 𝐵2 

By the usage of multi fuzzy set union definition conditions 

1.     𝐵1 ∪ 𝐵2(0) = (𝑥 ∗ 𝑥) 

               𝐵1 ∪ 𝐵2 = max{𝐵1(𝑥 ∗ 𝑥), 𝐵2(𝑥 ∗ 𝑥)} 
                     ≤ max {max{𝐵1(𝑥), 𝐵1(𝑥)}}. max {𝐵1(𝑥), 𝐵2(𝑥)}} 
                      = max{𝐵1(𝑥), 𝐵2(𝑥)} 
                      = 𝐵1 ∪ 𝐵2(𝑥) 

2.𝐵1 ∪ 𝐵2(𝑥) = max{𝐵1(𝑥), 𝐵2(𝑥)} 
                    ≤ max{𝐵1(𝑥 ∗ 𝑦), 𝐵2(𝑦)} ,max{𝐵2(𝑥 ∗ 𝑦), 𝐵2(𝑦)}} 
                    = max{𝐵1(𝑥 ∗ 𝑦), 𝐵2(𝑥 ∗ 𝑦)},max{𝐵1(𝑦), 𝐵2(𝑦)}} 
                     = 𝐵1 ∪ 𝐵2(𝑥 ∗ 𝑦), 𝐵1 ∪ 𝐵2(𝑥)(𝑦)} 

3.𝐵1 ∪ 𝐵2(𝑥 ∗ 𝑦) = max{𝐵1(𝑥 ∗ 𝑦), 𝐵2(𝑥 ∗ 𝑦)} 
                          ≤ 𝑚𝑎𝑥 max{𝐵1(𝑥), 𝐵2(𝑦)},max{𝐵1(𝑥), 𝐵2(𝑦)}} 
                           = 𝑚𝑎𝑥 max{𝐵1(𝑥), 𝐵2(𝑥)} ,max{𝐵1(𝑦), 𝐵2(𝑦)}} 
                            = max {𝐵1 ∪ 𝐵2(𝑥), 𝐵1 ∪ 𝐵2(𝑦)} 

Hence the proof. 

Definition 3.5: 

Let B be a multi fuzzy set in a BH-algebra X. Then B is referred to as Anti multi fuzzy closed 

ideal in X  if it satisfies the subsequent conditions: 

1. 𝐵(𝑥) ≤ max{𝐵(𝑥 ∗ 𝑦), 𝐵(𝑦)} 
2. 𝐵(0 ∗ 𝑦) ≤ 𝐵(𝑥) 

Example 3.6: Let 𝑋 = {0,1,2,3} be a set with the subsequent cayley table. 

* 0 1 2 3 

0 0 1 2 3 
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Let 𝐵:𝑋 → 𝐼 be a multi-fuzzy set described with the aid of using 𝐵(0) = 𝐵(1) = (0.6,0.8) 

and 𝐵(2) = 𝐵(3) = (0.3,0.4). 
Then 𝐵 is known as multi-fuzzy closed ideal in 𝑋. 

Theorem 3.7: Every Anti multi-fuzzy closed ideal is a Anti multi fuzzy ideal in X. 

Proof: Let B be a Anti multi fuzzy closed ideal in 𝑋. 
To show that B is a Anti multi fuzzy ideal in X 

It is sufficient to show that 𝐵(0) ≤ 𝐵(𝑥) 

Now , 𝐵(0) ≤ max {𝐵(0 ∗ 𝑥), 𝐵(𝑥)} 
Since through the use of Anti multi fuzzy closed ideal conditions 

 𝐵(0) ≤ max{𝐵(𝑥), 𝐵(𝑥)} 
           = 𝐵(𝑥) 

Clearly ii and iii are true. 

Remark 3.8 

The speak of the above theorem is not always true. 

Theorem 3.9 

If B is a Anti multi fuzzy BH-ideal in X, then the set ∪ (𝐵; 𝑠) is a BH-ideal in X for 𝑠 =𝑠1, 𝑠2, … . . 𝑠𝑘) where 𝑠𝑖 ∈ [0,1], for all i. 

Proof: 

Let B be a Anti multi fuzzy BH-ideal in X. 

To show that ∪ (𝐵; 𝑠) is a BH-ideal in X 

i) Since 𝐵(0) ≤ 𝐵(𝑥) ≤ 𝑠 

ii) Let 𝑥 ∗ 𝑦 ∈ 𝑈(𝐵; 𝑠) and 𝑦 ∈ 𝑈(𝐵, 𝑠) 

Then 𝐵(𝑥 ∗ 𝑦) ≤ 𝑠 and 𝐵(𝑦) ≤ 𝑠 

Now B(x)≤ max{𝐵(𝑥 ∗ 𝑦), 𝐵(𝑦)} 
                  ≤ max{𝑠, 𝑠} = 𝑠 

This implies that 𝑥 ∈ 𝑈(𝐵; 𝑠) 

iii) Let 𝑥 ∈ 𝑈(𝐵; 𝑠) and 𝑦 ∈ 𝑋 

Choose 𝑦 ∈ 𝑋 such that 𝐵(𝑦) ≤ 𝑠 

            𝐵(𝑥 ∗ 𝑦) ≤ max{𝐵(𝑥), 𝐵(𝑦)} 
                           ≤ max{𝑠, 𝑠} = 𝑠 

 This implies that 𝑥 ∗ 𝑦 ∈ 𝑈(𝐵; 𝑠) 

Hence 𝑈(𝐵; 𝑠) is a  BH- ideal in X. 

 

4. HOMOMORPHISM OF ANTI MULTI-FUZZY BH-IDEALS : 

In this segment we mentioned approximately the properties of Anti multi fuzzy BH-ideals 

under homomorphism. 

Definition 4.1  

Let 𝑔: 𝑋 → 𝑌 be a mapping of BH-algebra and B be a Anti multi fuzzy set Y then 𝑔−1(𝐵) is 

the pre-image of B under 𝑔 if 𝑔−1(𝑥) = 𝐵(𝑔(𝑥)) ∀𝑥 ∈ 𝑋. 

1 1 0 1 1 

2 2 2 0 2 

3 3 3 3 0 
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Theorem 4.2 

Let 𝑔: 𝑋 → 𝑌 be a homomorphism of BH-algebra. If B is Anti multi fuzzy BH-ideal of Y. 

Then 𝑔−1(𝐵) is a Anti multi fuzzy BH-ideal of 𝑋. 
Proof: 

Let 𝑔: 𝑋 → 𝑌 be a homomorphism of BH-algebra. 

Let B is a Anti multi fuzzy BH-ideal of Y. 

To show that  𝑔−1(𝐵) is a Anti multi fuzzy BH-ideal of 𝑋. 
For any 𝑥 ∈ 𝑋, 
By the usage of Anti multi fuzzy BH-ideal. 

1)𝑔−1(𝐵)(𝑥) = 𝐵(𝑔(𝑥)) ≤ 𝐵(0) 

               = 𝐵(𝑔(0)) 

                = 𝑓−1(𝐵)(0)         

2)𝑔−1(𝐵)(𝑥) = 𝐵(𝑔(𝑥)) ≤ max{𝐵(𝑔(𝑥)) ∗ 𝐵(𝑔(𝑦)), 𝐵(𝑔(𝑦))} 
                                           =  max {𝐵(𝑔(𝑥 ∗ 𝑦), 𝐵(𝑔(𝑦))} 
                                            = max{𝑔−1(𝐵)(𝑥 ∗ 𝑦), 𝑔−1(𝐵)(𝑦)} 
3)𝑔−1(𝐵)(𝑥 ∗ 𝑦) = 𝐵(𝑔(𝑥 ∗ 𝑦)) = 𝐵(𝑔(𝑥) ∗ 𝑔(𝑦)) 

                          ≤ max{𝐵(𝑔(𝑥), 𝐵(𝑔(𝑦))} 
                            = max {𝑔−1(𝐵)(𝑥), 𝑔−1(𝐵)(𝑦)} 

Hence 𝑔−1(𝐵) is a Anti multi fuzzy BH-ideal of 𝑋. 
Theorem 4.3 

Let 𝑔: 𝑋 → 𝑌 be an epimorphism of a BH-algebra. If 𝑔−1(𝐵) is a Anti multi fuzzy ideal in X 

then B is a Anti multi fuzzy ideal in Y. 

Proof: 

Let 𝑔: 𝑋 → 𝑌 be an epimorphism of a BH-algebra  

Let 𝑔−1(𝐵) is a Anti multi fuzzy ideal in X 

To show that B is a Anti multi fuzzy ideal in Y. 

Let 𝑦 ∈ 𝑌 there exists 𝑥 ∈ 𝑋 such that 𝑔(𝑥) = 𝑦𝐵(𝑦) 

  = 𝐵(𝑔(𝑥)) = 𝑔−1(𝐵)(𝑥) 

  ≤ 𝑔−1(𝐵)(0) 

   = 𝐵(𝑔(0)) = 𝐵(0) 

That is 𝐵(0) ≥ 𝐵(𝑦) 

ii) Let 𝑥, 𝑦 ∈ 𝑌 there exists 𝑎, 𝑏 ∈ 𝑋 such that 𝑔(𝑎) = 𝑥, 𝑔(𝑏) = 𝑦 

 𝐵(𝑥) = 𝐵(𝑔(𝑎)) 

           = 𝑔−1(𝐵)(𝑎) 

           ≤ max{𝑔−1(𝐵)(𝑎 ∗ 𝑏), 𝑔−1(𝐵)(𝑏)} 
            = max{𝐵(𝑔(𝑎 ∗ 𝑏)), 𝐵(𝑔(𝑏))} 
             = max{𝐵(𝑔(𝑎) ∗ 𝑔(𝑏)), 𝐵(𝑔(𝑏))} 
              = max{𝐵(𝑥 ∗ 𝑦), 𝐵(𝑦)} 
iii)𝐵(𝑥 ∗ 𝑦) = 𝐵(𝑔(𝑎) ∗ 𝑔(𝑏)) 

                     = 𝐵(𝑔(𝑎 ∗ 𝑏)) 

                      =𝑔−1(𝐵)(𝑎 ∗ 𝑏) 
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                      ≤ max{𝑔−1(𝐵)(𝑎), 𝑔−1(𝐵)(𝑏)} 
      = max{𝐵(𝑔(𝑎)), 𝐵(𝑔(𝑏))} 
       = max{𝐵(𝑥), 𝐵(𝑦)} 

Hence B is Anti multi-fuzzy BH-ideal in Y. 
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ABSTRACT : This paper introduces a new type of generalised ω-open sets, as well as some 

generalised locally closed sets in topological spaces, in order to derive a       decomposition 

of ω-continuity. 

 

Key words: 𝛽 − 𝑔𝜔 −open set, locally closed set, 𝛽 − 𝑔𝜔 − locally closed set, locally 𝜔 − 𝛽- 

closed set. 

1. INTRODUCTION: 

An updated version of generalised closed sets was first presented by Levine [5] in the field 

of topology. In a topological space, Andrijevic [4] defined a category of generalised open sets 

called b-open sets. Gama-open sets are a subclass of sets that were studied by Ekici and Caldas 

[8]. In his 1980 paper, Dunham examined the topological findings of generalised closed sets. 

Many inquiries about b-open sets were explored by Ganster [7]. Since the inception of these 

ideas, several studies have been documented, each with its own unique set of findings. 

    This paper presents a new category of semi-generalized b-closed sets, semi-generalized b-

open sets, Tsgb-space and investigates their connections to related classes. The differences 

between open sets and closed sets, as well as their qualities, have been explored. In addition, a 

new operator, the lorry operator, has been added, and some of its attributes have been 

investigated in this chapter. 

 

2. SEMI GENERALIZED b-CLOSED SET : 

Here, the definition of semi-generalized b-closed set and certain characterizations are 

discussed. 

Definition 2.1: If bCl (A)  ⊆  G, then subset A of (X, τ ) is consider to be a semi generalized b − closed set represented by sgb –  closed set whenever G and A ⊆  G is semi open in (X, τ ). 

Definition 2.2: The notation sgbc(X) stands for the set of all sgb − closed sets in the 

topological space (X, τ ). 

mailto:saradhadeviharikesavan@gmail.com
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Theorem 2.3: Suppose (X, τ )  contains A be a sgb − closed subset ,that means non-empty 

closed sets does not contain in bCl (A) –  A. 

Proof: Suppose F ∈  Cl(X) such that F ⊆  bCl (A) –  A where X –  F is semi open. A ⊆  X –  F and A will be sgb − closed.  

Its follows that bCl (A) ⊆  X –  F  
Hence F ⊆  X –  bCl (A). 
Which infers that F ⊆ (X − bCl (A))  ∩ (bCl (A) –  A) = φ .  

Therefore F = φ. 
Corollary 2.4: Suppose A be consider as sgb − closed set. Therefore iff bCl (A)–  A is closed 

set then A is said to be b − closed. 

Proof: Necessary part: Suppose A be a sgb − closed set.bCl (A) –  A =  φ which is closed 

set when A is b-closed. 

Converse part: Consider bCl (A) –  A be closed, here with theorem 4.2.3 bCl (A) –  A will not 

have any non-empty closed subset and as bCl (A)–  A  will be closed subset of itself.  

Then, bCl (A) –  A =  φ 

 bCl (A)  =  A 

and A is b − closed set. 
Theorem 2.5: Suppose B ⊆  A ⊆ X in which A is a semi-open set and sgb-closed set. B is 

then sgb-closed relation to A iff B is sgb − closed in X. 

Proof: Necessary part: It is first considered that as B⊆A and A are both sgb-closed and semi 

open set, bCl (A) ⊆  A and thus bCl (B)  ⊆ bCl (A)  ⊆  A 

Hence, A ∩  bCl (B) =  bClA(B) bCl (B)  =  bClA (B)  ⊆  A 

Given that B is sgb − closed with respect to A and G will be a semi-open  

subset of X,  B ⊆  G, therefore  B =  B ∩ A ⊆ G ⊆  A 

In which G ∩ A is semi open in A. 

That means, B is sgb − closed relative to A,  bCl (B)  =  bClA (B)  ⊆  G ∩  A ⟹  bCl (B)  ⊆  G 

Therefore B is sgb − closed in X. 

Converse part: Suppose B ⊆  G, then G =  V ∩  A for certain semi open subset V of X. 

As B ⊆  V and B is sgb − closed in X, bCl (B)  ⊆  V,  

Hence bClA (B)  =  bCl (B)  ∩  A ⊆  V ∩  A ⊆G.⇒  bClA (B)  ⊆  G 

Therefore B is sgb − closed in relation to A. 

Remark 2.6: Suppose subset A be semi open and sgb-closed, A ∩  F is then sgb-closed 

whenever F ∈ bCl (X). 

Proof: The set A will be b-closed since bCl (A) ⊆  A and A is sgb-closed and semi-open. As a 

result, A ∩  F is b-closed in X that indicates that A ∩ F is sgb-closed in X. 

Hence A is semi open set and represented as −closed , thereore bCl (A) ⊆  A and that means 
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A is b − closed. Therefore, A ∩ F is b-closed in X that infers that  A ∩  F  will be sgb-closed in X. 

Theorem 2.7: When A is a sgb-closed set and B is any set so that A ⊆  B ⊆ bCl (A), B is then 

a sgb − closed set. 
Proof: Suppose B ⊆  G where G is semi open set. As A is sgb-closed set and A ⊆ G therefore bCl(A)  ⊆ G and also bCl (A)  =  bCl(B). 
That means, bCl(B)  ⊆  G and thus B is sgb − closed set. 
Theorem 2.8: Any pair of sets that intersect is also a sgb − closed set. 
Proof: Suppose A and B be two sgb − closed set, that is, bCl(A)  ⊆  G whenever A ⊆ G and 

G is semi open & bCl(B)  ⊆  G wherever B ⊆  G and G is semi open. 

Now, bCl (A ∩  B)  =  bCl(A)  ∩  bCl(B)  ⊆  G 

Here A ∩  B ⊆  G and G is semi-open. Hence, any two sgb − closed sets may intersect inside 

themselves. 

Remark 2.9: As given in the subsequent example, union of any two sgb − closed sets is not 

required to be a sgb − closed set.  
Example 2.10: Suppose X = {a, b, c}, τ =  {X , φ, {a, b}}  in this topology space (X, τ), 
Therefore, the union of a and b does not constitute a sgb-closed set, despite the fact that the 

subsets a and b themselves do. 

Theorem 2.11: Each b − closed set is sgb − closed set. 
Proof: Let us assume that X includes two sets, A, which is a b-closed set, and G, which is a 

semi-open set that contains A. Therefore, each b −  closed set is sgb − closed set.  
Here G ⊇ A = bcl(A) 

Remark 2.12: As given in the subsequent example, the reverse of the above theorem does not 

necessarily have to be correct. 

Example 2.13: Suppose X =  {a, b, c}, τ =  {X, φ , {a}, {c}, {a, c}}, this topological space (X, τ ), the subset {a, c} will be sgb-closed which will not be b-closed set. 

Theorem 2.14: Each swg − closed set is sgb − closed set. 
Proof: Suppose A be a swg − closed set. 
That means Cl (Int A)  ⊆  G in this equation. A ⊆  G & G  are semi-open. 

Due to the fact that all semi-closed sets are b-closed sets, bCl A ⊆  Cl (Int A)  ⊆  G and G is 

semi-open. 

That means A is sgb − closed set. 
Remark 2.15: As given in the subsequent example, the reverse of the above theorem does not 

necessarily have to be correct. 

Example 2.16: Suppose X =  {a, b, c}, τ =  {X, φ , {b}, {c}, {b, c}}. Subset {b} is a sgb −closed set, which is not a swg − closed set, in this topological space (X, τ). 
Theorem 2.17: Each gα − closed set is sgb-closed set. 

Proof: Suppose A be a gα − closed set therefore, α Cl A ⊆  G whenever A ⊆  G and G is α − open. Hence, each α −  closed sets are b-closed sets,  bCl(A) ⊆ α ClA ⊆ G and G is semi – open. Therefore A is sgb − closed. 

Hence, each gα − closed set is sgb-closed set. 
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3. SEMI GENERALIZED b-OPEN SETS : 

This section describes the characteristics of the newly discovered class of semi-generalized b-

open set in topological spaces that has been introduced here. 

Definition 3.1: When the complement Ac of a subset A of (X, τ) is also a semi generalised b-

open set, we say that A is semi generalised b-open. 

The set sgbO(X) represents all sets in X that are sgb-open. 

Theorem 3.2: A subset A ⊆  X will be sgb-closed set if F ⊆  b Int (A) if F is closed set and F ⊆  A. 

Proof: Suppose A be a sgb − open set & consider F ⊆  A here F is closed, X − A is that means 

a sgb − closed set in the semi open set X − F. Therefore,  bCl (X − A)  ⊆  X − F and X − b Int (A)  ⊆  X − F.Therefore F ⊆ b Int (A). Contrariwise, if 

F is a closed set with F ⊆  b Int (A) and F ⊆  A therefore X − b Int (A)  ⊆  X − F, that 

means bCl (X − A)  ⊆  X −F.Therefore, X − A is sgb − closed set and A is a sgb −closed set. 
 

4. SEPERATION AXIOMS OF 𝐓𝐬𝐠𝐛-SPACES 

In this section, we investigate the axiom-splitting process and develop a new kind of 

topological space called Tsgb-space. The connection to related areas is also elaborated upon. 

Definition 4.1: (X, τ )  is considered to be Tsgb –  space with a condition that each sgb −closed set is semi-closed set. 

Theorem 4.2: Each Tswg –  space is Tsgb –  space. 

Proof: Suppose X be Tswg –  space and A be a swg − closed set in X that means A is 

considered as sgb − closed set through Theorem 4.2.14. Due to the fact that X is a Tswg –  space, A is closed, and as a result, it is semi-closed. As a result, X belongs to the Tsgb –  space class. 

Remark 4.3: As may be seen from the following example, the reverse of the above theorem 

does not necessarily have to be correct. 

Example 4.4: Suppose X =  {a, b, c}, τ =  {X, φ, {a}}. In this topological space (X, τ ) is Tsgb −space and not Tswg  -space, where the subset {b} is swg − closed which is not closed set. 

Remark 4.5: Here are some illustrations that illustrate how independent the Tsgb –  space and 

pre-T1/2 − space are from one another. 

Example 4.6: Suppose X =  {a, b, c}, τ =  {X, φ , {a}}. In this topological space (X, τ ) is Tsgb − space and not pre T1/2 -spaces, due to the fact that the subset        {a, b} is a gp-closed 

set, rather than a pre-closed set. 

Example 4.7: Suppose X =  {a, b, c}, τ =  {X, φ , {a, b}}.In this topological space (X, τ ) is pre T1/2  − space and not Tswg – spaces, since the subset {a} is sgb-closed set which is not semi-

closed set. 

Remark 4.8: The following examples demonstrate that the Tsgb − spaces and Td − spaces are 

distinct from one another. 

Example 4.9: Suppose X =  {a, b, c}, τ =  {X, φ , {a}, {a, b}}. In this topological space (X, τ ) 

is Tsgb − spaces and not Td − spaces, since the subset {b} is gs −  closed set that is not g-

closed set. 
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Example 4.10: Suppose X =  {a, b, c}, τ =  {X, φ , {c}, {a, b}} this topological space (X, τ ) is Td − space and not Tsgb – spaces, since the subset {b} is sgb − closed set which is not semi-

closed set. 

Definition 4.11: For any subset E of (X, τ ), the following is defined, bCl∗(E) = ∩  A ∶  E ⊂  A(∈  bD(X, τ)) 

Where bD(X, τ ) = {A ∶  A ⊂  X and A is sgb closed in (X, τ)} 
Theorem 4.12: Suppose E and F be the two subsets of a space (X, τ ).Then, 

(i) E ⊂ bcl∗(E)  ⊂  bcl(E)  ⊂  cl(E) 

(ii) bcl∗( φ) =  φ and bcl∗(X)  =  X 

(iii) bcl∗(E ∪  F)  ⊃  bcl∗(E) ∪ bcl∗(F) 

(iv) bcl∗(bcl∗E)  =  bcl∗ (E) and 

(v) if E is sgb − closed then bcl∗(E)  =  E. 
The argument may be shown to be self-evident once the definitions and characteristics of sgb −closed sets are understood. 

Theorem 4.13: For every x ∈ X, {x} will be semi-closed or its compliment {x}{c} will be sgb-

closed in a space (X, τ). 
Proof: Consider {x} is not semi-closed in (X, τ ).As {x}{c}  will not be semi- open. The space X 

itself is only semi-open set containing {x}{c}. Therefore, bCl({x}{c}) holds and {x}{c}is sgb-

closed. 

Theorem 4.14: For a space (X, τ ) if x ≠  y then bcl∗(x)  ≠  bcl∗(y). 
Proof: With the help of above Theorem, it is sufficient to prove the following, that is {x}{c} is sgb − closed.Since {y}  ⊂ {x}{c}, y ∈ bcl∗({y})  ⊂ {x}{c}, 
 bcl∗({y})  ≠  bcl∗({x}). 
Definition 4.15: S.O (X, τ)∗  = {B ∶  bcl∗ (Bc)  =  (Bc) } 
Remarks 4.16: If E ∈ bD(X , τ ) (Def. 4.5.1) then Ec ∈ S. O(X, τ)∗ 

Theorem 4.17: (i) S. O. ( τ )  ⊂ S. O. ( 𝜏)∗ holds 

(ii) A space (X , τ ) is 𝑇𝑠𝑔𝑏  if and only if S. O. ( τ ) ϵ S. O. ( 𝜏)∗ holds. 

Proof: (i) Suppose E ∈ S. O. (τ ) , its complement Ec then is semi-closed, if and only if Ec = bCl(Ec), which follows from Theorem 4.5.2 (i) that bcl∗(Ec)  =  Ec holds. 

That is E ϵ S. O. ( 𝜏)∗. 
(ii) Necessity: Given that the assumption is true, the semi-closed sets and the sgb − closed sets 

are equivalent, bCl(E)  =  bcl∗(E) holds for every subset of (X, τ). 
Hence S. O. ( τ ) ϵ S. O. ( 𝜏)∗ 

Sufficiency: Suppose A be as gb − closed set of  (X , τ ). 

With the help of Theorem 4.5.2(V), then A =  bcl∗(A) and hence Ac ∈ S. O. (τ ) 

Hence A is semi-closed. That means (X , τ )is Tsgb − space. 
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